期刊文献+

基于自适应仿生小波变换的语音增强方法 被引量:3

Speech Enhancement Method Based on Adaptive Bionic Wavelet Transform
下载PDF
导出
摘要 分析自适应滤波和小波滤波的原理与方法,提出一种基于自适应仿生小波变换的语音增强方法。该方法首先用仿生小波变换对含噪语音信号进行小波分解,这样可以保证对信号频率和幅值的听觉特性,然后将经仿生小波变换所分离出来的噪声成分作为自适应滤波器的输入。通过选用自适应滤波器的最小二乘算法(RLS)从而实现信噪分离的最佳滤波,以保证去除信号中的相关噪声。实验结果表明,该方法对语音信号有显著的增强效果,能实现语音信号在同频段对噪声成分和有用信号的最佳估计。 The principle and the method of the adaptive filter and the filtering with wavelet transform are analyzed,and a speech enhancement method is presented based on adaptive bionic wavelet transform.Firstly,the noised speech signal is investigated using the bionic wavelet transform.The auditory perception of the frequency and the amplitude signal is maintained.Then,the separated signal of noise by the wavelet transform is the input signal of the adaptive filter. The optimal filtering method for the signal-noise decomposition is realized by using adaptive filtering algorithm—recursive least-squares(RLSs) and the correlated noise of removaled signal is established.Experimental results show that the method has a prominent effect on the speech signal,and realizes the optimal estimation to the valuable signal and the transient signal of noise in the same frequency segment.
出处 《数据采集与处理》 CSCD 北大核心 2010年第6期741-745,共5页 Journal of Data Acquisition and Processing
基金 湖南省教育厅科研支持(08C614)资助项目
关键词 语音增强 仿生小波变换 自适应滤波 speech enhancement bionic wavelet transform(BWT) adaptive filtering
  • 相关文献

参考文献9

  • 1Manolakis D G.Statistical and adaptive signal processing[M].New York:McGraw-Hill,2003:21-26.
  • 2曹斌芳,何怡刚,郭杰荣.强噪声背景下的语音信号提取研究[J].噪声与振动控制,2008,28(4):145-148. 被引量:9
  • 3Bahoura M,Rouat J.Wavelet speech enhancement based on the teager energy operator[J].IEEE Signal Processing Letters,2001,8(1):10-12.
  • 4Yao J,Zhang Y T.Bionic wavelet transform:A newtime-frequency method based on an auditory model[J].IEEE Trans on Biomedical Engineering,2001,48(8):856-863.
  • 5Loizou H Y,Philipos C.Speech enhancement based on wavelet thresholding the multitaper spectrum[J].IEEE Trans on Speech and Audio Processing,2004,12(1):59-67.
  • 6Chen S H,Wang J F.Speech enhancement using perceptual wavelet packet decomposition and teager energy operator[J].Journal of VLSI Signal Processing,2004,36(2):125-139.
  • 7Lei S F,Tung Y K.Speech enhancement for nonstationary noises by wavelet packet transform and adaptive noise estimation[C] //International Sym on Intelligent Signal Processing and Comm Systems.Hong Kong,China:[s.n.] ,2005:41-44.
  • 8Donoho D L.De-noising soft-thresholding[J].IEEE Trans on Information Theory,1995,51(3);613-627.
  • 9徐耀华,王刚,郭英.基于时频阈值的小波包语音增强算法[J].电子与信息学报,2008,30(6):1363-1366. 被引量:16

二级参考文献19

  • 1赵彩华,刘琚,孙建德,闫华.基于小波变换和独立分量分析的含噪混叠语音盲分离[J].电子与信息学报,2006,28(9):1565-1568. 被引量:14
  • 2Donoho D L. De-noising by soft thresholding [J]. IEEE Trans. on Inform. Theory, 1995, 41(3): 613-627.
  • 3Donoho D L and Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
  • 4Shao Yu and Chang C H. A versatile speech enhancement system based on perceptual wavelet de-noising [C]. Kobe, Japan, IEEE International Sym. on Circuits and Systems, 2005, 2: 864-867.
  • 5Ayat S and Manzuri M T. Wavelet based speech enhancement using a new thresholding algorithm [C]. Hongkong, International Sym. on Intelligent Multimedia, Video and Speech Processing, 2004, 10: 238-241.
  • 6Chen S H and Wang J F. Speech enhancement using perceptual wavelet packet decomposition and teager energy operator [J]. Journal of VLSI Signal Processing, 2004, 36(2): 125-139.
  • 7Bahoura M and Rouat J. Wavelet speech enhancement based on the teager energy operator [J]. IEEE Signal Processing Letters, 2001, 8(1): 10-12.
  • 8Lei S F and Tung Y K. Speech enhancement for nonstationary noises by wavelet packet transform and adaptive noise estimation [C]. Hongkong, International Sym. on Intelligent Signal Processing and Comm. Systems, 2005: 41-44.
  • 9Virag N. Single channel speech enhancement based on masking properties of the human auditory system [J]. IEEE Trans. on Speech and Audio Processing, 1999, 7(2): 126-137.
  • 10Chen Q, and Guo Y, et al.. A LSAoMMSE speech enhancement approach incorporating masking properties [M]. China, International Conference on Comm., Circuits and Systems Proc., 2006: 455-458.

共引文献21

同被引文献29

  • 1杨玺,樊晓平.基于仿生小波变换和自适应阈值的语音增强方法[J].控制与决策,2006,21(9):1033-1036. 被引量:6
  • 2邹霞,陈亮,张雄伟.基于Gamma语音模型的语音增强算法[J].通信学报,2006,27(10):118-123. 被引量:11
  • 3Ephraim Y, Malah D. Speech enhancement using a minimum mean-square error short-time spectral am- plitude estimator [J]. IEEE Trans Acoust Speech, Signal Process, 1984,32(6) :1109- 1121.
  • 4Gazor S, Zhang W. Speech probability distribution [J]. IEEE Signal Process Lett, 2003,10(7):2042- 207.
  • 5Martin R. Speech enhancement based on minimum mean-square error estimation and super Gaussian pri- orsEJ~. IEEE Trans Speech Audio Process, 2005,13 (5) :845-856.
  • 6Lotter T, Vary P. Speech enhancement by MAP spectral amplitude estimation using a super-Gaussian speech model[J]. Eurasip J Signal Process, 2005, (7) :1110-1126.
  • 7Hendriks R C. Heusdens R, Jensen J. Log-spectral magnitude MMSE estimators under super-gaussian densities[J]. Inter Speech, 2009,10(6) :1319-1322.
  • 8Ephraim Y. A Bayesian estimation approach for speech enhancement using hidden Markov models [J]. IEEE Trans Acoust Speech, Signal Process, 1992, 40(4) :725-735.
  • 9Ding Guohong, Wang Xia, Cao Yang, et al. Speech enhancement based on speech spectral complex Gaussian mixture model[C]//IEEE Int Conf Acous- tic, Speech, Signal Process (ICASSP). Philadephia, USA: IEEE, 2005 :165-168.
  • 10Erkelens J S, Jensen J, Heusdens R. Speech en- hancement based on Rayleigh mixture modeling of speech spectral amplitude distributions[C]//Europe- an Signal Proc Conf (EUSIPCO). Poznan, Poland.. [s. n. ], 2007:65-69.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部