期刊文献+

B(LF,ω~2 )-refinability of inverse limits

B(LF, ω~2 )-refinability of inverse limits
下载PDF
导出
摘要 Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each Xα is B(LF, ω^2)-refinable (hereditarily B(LF, ω^2)- refinable), then X is B(LF, ω^2)-refinable (hereditarily B(LF,ω ^2)-refinable). Furthermore, we show that B(LF, ω^2)-refinable spaces can be preserved inversely undcr closed maps. Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each Xα is B(LF, ω^2)-refinable (hereditarily B(LF, ω^2)- refinable), then X is B(LF, ω^2)-refinable (hereditarily B(LF,ω ^2)-refinable). Furthermore, we show that B(LF, ω^2)-refinable spaces can be preserved inversely undcr closed maps.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期496-502,共7页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China (10671173)
关键词 Inverse limit B(LF ω^2)-refinability hereditary B(LF ω ^2)-refinability. Inverse limit, B(LF, ω^2)-refinability, hereditary B(LF,ω ^2)-refinability.
  • 相关文献

参考文献7

  • 1K Chiba.Normality of inverse limits,Math Japon,1990,35:959-970.
  • 2J G Jiang.A characterization of paracompactness,Journal of Sichuan University (Natural Science Edition),1987,24:256-261.(In Chinese).
  • 3L L Krajewrki.Expanding locally finite collection,Canad J Math,1971,23:58-68.
  • 4RHPrice,J C Smith.Aremarle on B(p,α)-refinability,Proc Japan Acad Ser A,1989,65:245-248.
  • 5RH Price,J C Smith.Applications of B(p,α)-refinablity for generalized collectionwise normal spaces.,Proc Japan Acad Ser A,1989,65:249-252.
  • 6R H Price,J C Smith.A characterization for paracompactness,Proc Japan Acad Ser A,1989,65:311-314.
  • 7J C Smith.Irreducible spaces and property b1,Topology Proc,1980,5:187-200.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部