期刊文献+

拓扑向量空间中Gteaux可微多目标优化的充分性和对偶性(英文)

Sufficiency and duality of Gteaux differentiable multi-objective optimization in topological vector spaces
原文传递
导出
摘要 本文研究了拓扑向量空间中的多目标优化问题的充分性和对偶性.对拓扑向量空间中Gteaux可微映射,引进了几类广义type-Ⅰ映射的概念并在这些广义type-Ⅰ假设下证明了一些最优性充分条件和对偶定理. In this paper, the authors deal with the sufficiency and duality for a multi-objective optimization problem where all functions involved are defined on locally convex Hausdorff .topological vector spaces. Several classes of generalized type-Ⅰ mappings are introduced for Gateaux differentiable mappings between locally convex Hausdorff topological vector spaces. Based upon these generalized type-Ⅰmappings, they obtain a few sufficient optimality conditions and prove some results on duality.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期1233-1237,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家青年自然科学基金(10901004) 国家民委自然科学基金(09BF06) 宁夏自然科学基金(NZ0959)
关键词 多目标优化 Gteaux可微映射 type-Ⅰ映射 对偶 multi-objective optimization, Gateaux differentiable map, type- Ⅰ map, duality
  • 相关文献

参考文献12

  • 1Hanson M A,Mond B.Necessary and sufficient conditions in constrained optimization[J].Mathematical Programming,1987,37(1):51.
  • 2Rueda N G,Hanson M A.Optimality criteria in mathematical programming involving generalized invexity[J].J Math Anal Appl,1998,130(2):375.
  • 3Kaul R N,Suneja S K,Srivastava M K.Optimality criteria and duality in multiple objective optimization involving generalized invexity[J].J Optim Theory Appl,1994,80(2):465.
  • 4Mishra S K,Noor M A.Some nondifferentiable multi-objective programming problems[J].J Math Anal Appl,2006,316(2):472.
  • 5Hachimi M,Aghezzaf B.Sufficiency and duality in nondifferentiable multi-objective programming involring generalized type-Ⅰ functions[J].J Math Anal Appl,2006,319(1):110.
  • 6Minami M.Weak Pareto-optimal necessary conditions in a nondifferential multi-objective program on a Banach space[J].J Optim Theory Appl,1983,41(2):451.
  • 7Brando A J,Rojas-Medar M A,Silva G N.Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces[J].J Optim Theory Appl,1999,103(1):65.
  • 8Mishra S K,Giorgi G,Wang S Y.Duality in vector optimization in Banach spaces with generalized convexity[J].J Global Optim,2004,29(2):415.
  • 9Hu Y D,Ling C.The generalized optimality conditions of multi-objective programming problem in topological vector space[J].J Math.Anal Appl,2004,290(1):363.
  • 10余国林,刘三阳.实线性空间中的广义向量类凸性(英文)[J].四川大学学报(自然科学版),2008,45(2):229-232. 被引量:1

二级参考文献7

  • 1郭进利.局部Lipschitz泛函的最小值存在性定理[J].上海科技大学学报,1994,17(1):86-88. 被引量:1
  • 2钟承奎.Ekeland变分原理的推广及其应用[J].数学学报(中文版),1997,40(2):185-190. 被引量:5
  • 3Adan M, Novo V. Proper efficiency in vector optimization on real linear spaces[J]. Journal of Optimization and Application, 2004, 121(3): 515.
  • 4Adan M, Novo V. Weak efficiency in vector optimization using a closure of algebraic type under cone convexlikeness[J]. European Journal of Operational Research, 2003, 149: 641.
  • 5Adan M, Novo V. Optimality conditions for vector optimization problems with generalized convexity in real linear spaces[J]. Optimization, 2002, 51: 73.
  • 6Adan M, Novo V. Partial and generalized subconvexity in vector optimization problem[J]. Journal of Convex Analysis, 2001, 8: 583.
  • 7陈伟.关于局部Lipschitz泛函的一个临界点存在定理[J].北京广播学院学报(自然科学版),2001(2):27-33. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部