摘要
众所周知,在研究气体动力学方程组的数值方法时,处理物理平面(z,r)中复杂几何的方法之一是把物理平面变换成矩形的计算平面(ξ(z,r),η(z,r))。所希望的变换具有这样的性质:物理平面的边界要位于矩形计算平面的边界上。我们在1964年在未发表的工作中提出在以流线为ξ(z,r),与流线正交的曲线为η(z,r)
In this paper the methods of numerical solution of the inviscid flow fields in a stream-line coordinate system, which include supersonic, transonic and subsonic regions, are presen-ted. We derive the partial differential equations for computing supersonic flow and transonicand subsonic flows, respectively, set up the finite difference equations and discuss the methodsof solution. Finally, the computational results are shown.
出处
《数值计算与计算机应用》
CSCD
北大核心
1990年第4期211-223,共13页
Journal on Numerical Methods and Computer Applications