期刊文献+

电纺复合纳米纤维对难溶药物增溶促渗作用研究

Improving effects of electrospun composite nanofibers on the dissolution and permeation of poorly water soluble drugs
下载PDF
导出
摘要 以75%(体积比)的乙醇水溶液为溶剂,将聚乙烯吡咯烷酮PVP K30、十二烷基硫酸钠(SDS)、阿魏酸(FA)按质量比30∶1∶10 w/v%配成共溶纺丝液,采用电纺工艺制备出多组分复合纳米纤维。场扫描电镜观察表明纤维膜具有立体三维连续网状结构,纤维结构均一、表面光滑,96%纤维直径在140~280nm之间。X射线晶体衍射和差示扫描量热结果表明FA和SDS能以分子状态高度复合分散于PVP纤维基材中,衰减全反射红外扫描结果表明SDS、FA、PVP之间能够通过氢键、静电吸引、疏水性能发生相互作用而复合。体外溶出与透膜结果表明复合纳米纤维具有改善药物溶出特征、促进药物透膜吸收的功能。 Multicomponents composite nanofibers have been prepared from co-dissolving solutions of polyvinylpyrrolidone K30(PVP K30), sodium dodecyl sulfate(SDS), and ferulic acid(FA) with a weight ratio of 30∶1∶10 in the 75(v/v)% ethanol aqueous solutions using electrospinning process. FESEM observations showed that the nanofibers were in a format of three-dimensional continuous web with smooth surface and homogeneous structure. 94% of the nanofibers falled in a diameter range of 100-300nm. XRD and DSC results suggested that FA and SDS were able to distribute in the PVP K30 fiber matrix on a molecular scale. ATR-FTIR spectra verified that second-order interactions such as hydrogen bonding, electrostatic forces and hydrophobic forces played a fundamental role in the forming of the composite nanofibers. In vitro dissolution and permeation tests illustrated that the composite nanofibers could improve both the dissolution rates and the permeation profiles of FA.
出处 《功能材料》 EI CAS CSCD 北大核心 2010年第A03期469-472,共4页 Journal of Functional Materials
基金 中国博士后基金特别资助项目(200902195) 东华大学青年教师科研启动基金资助项目(228100044019)
关键词 复合功能纳米纤维 高压静电纺丝 阿魏酸 溶解 渗透 composite functional nanofibers electrospinning ferulic acid dissolution permeation
  • 相关文献

参考文献5

二级参考文献43

  • 1尹桂波,张幼珠.静电纺再生丝素纳米纤维形态结构的研究[J].丝绸,2005,42(2):16-18. 被引量:24
  • 2王洪,邵惠丽,胡学超.再生丝素蛋白水溶液静电纺丝性能的研究[J].功能材料,2005,36(10):1584-1586. 被引量:9
  • 3丁雅梅,袁晓燕.电纺功能复合超细纤维的研究进展[J].材料导报,2005,19(F05):104-106. 被引量:1
  • 4Lee K H, Baek D H, Ki C S, et al. [J]. International Journal of Biological Macromolecules, 2007, 41(2): 168-172.
  • 5Ha S W, Tonelli A E, Hudson S M. [J]. Biomacromolecules, 2005, 6(3): 1722-1731.
  • 6Chen C, Cao C B, Ma X L, et al. [J]. Polymer, 2006, 47(18) : 6322-6327.
  • 7Ayutsede J, Gandhi M, Sukigara S, et al. [J]. Polymer, 2005, 46(5): 1625-1634.
  • 8Yin G B, Zhang Y Z, Bao W W, et al. [J]. Journal of Applied Polymer Science, 2008, 111(3): 1471-1477.
  • 9Lee K H. [J]. Macromolecular Rapid Communications, 2004, 25(20): 1792-1796.
  • 10Ki C S, Kim J W, Oh H J, et al. [J]. International Journal of Biological Macromolecules, 2007, 41(3) : 346-353.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部