期刊文献+

数据驱动技术在石化工业运行中的应用 被引量:1

Application of Data-based Techniques for Petrochemical Industry Process
下载PDF
导出
摘要 介绍了数据驱动技术在石化工业运行中应用的重要性。对石化行业过程历史数据的特点及建模过程中的处理方法、数据驱动技术的方法、建模步骤、数据驱动技术在石化工业运行中的应用等进行了回顾与总结。对数据驱动技术在石化工业运行中的发展方向做了讨论。 The importance of data-driven techniques in the petrochemical industry is introduced. Some other aspects about data-driven techniques, including the characteristics of historical data in petrochemical industrial process and data pretreatment methods in modeling, the applications fields in the petrochemical industry, data driven methods, and development methodology are summaried. The future directions of data-driven techniques in the petrochemical industry is discussed.
作者 冯大春 鲁红
出处 《石油化工自动化》 CAS 2010年第6期28-35,共8页 Automation in Petro-chemical Industry
基金 国家自然科学基金资助(20976204)
关键词 数据驱动 工业运行 优化 data-driven industrial process optimization
  • 相关文献

参考文献32

二级参考文献154

共引文献318

同被引文献20

  • 1胡志坤,桂卫华,彭小奇,姚俊峰,张卫华.铜转炉生产操作模式智能优化[J].控制理论与应用,2005,22(2):243-247. 被引量:16
  • 2严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 3Hu Zhikun(胡志坤). Research on intelligent optimization methods of operational pattern in the complex process of nonferrous metallurgy smelting [D]. Changsha: Central South University,2005.
  • 4Dana Angluin,Philip Laird. Learning from noisy examples [J]. Machine Learning,1988,2 (4): 343-370.
  • 5Fabien Lauer,GrardBloch. Incorporating prior knowledge in support vector吨ression [J]. Machine Learning,2008,70 (1): 256-264.
  • 6Suykens 1 A K. Least squares support vector machine classifiers [J]. Neural Processing Letters. 1999. 9: 293 300.
  • 7Adams N M. Hand D J. Comparing classifiers when the misallocation costs are uncertain [J]. Pattern Recognition. 1999.32 (7): 1139-1147.
  • 8Y oav Freund. Boosting a weak learning algorithm by majority DJ. Information and Computation. 1995. 12 (2): 256-285.
  • 9Schapire R. Singer Y. BoosTexter: a boosting-based system for text categorization [J]. Machine Learning. 2000. 39 (2/3): 135-168.
  • 10Friedman H. Hastie T. TibshiraniR. Additive logisticregression: a statistical view of Boosting [J]. Annals of Statistics. 2000. 28 (2): 337-343.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部