期刊文献+

基于多模态进化Rao-Blackwellized粒子滤波器的移动机器人航迹推算系统的故障诊断 被引量:1

Fault diagnosis for mobile-robot dead reckoning system based on multimodality evolutionary Rao-Blackwellized particle filter
原文传递
导出
摘要 针对一类移动机器人航迹推算系统的故障诊断问题,提出一种多模态进化Rao-Blackwellized粒子滤波器(MERBPF)算法.为解决由粒子贫乏引起的不一致性问题,采用交叉与变异种群策略优化,根据粒子多样性加入扰动因子.利用专家规则判定机器人运动状态所对应的MERBPF,构造复杂逻辑表述方法.仿真实验结果表明:在强过程噪声下,MERBPF仍具有较高的鲁棒性,提高了诊断机器人航迹推算系统的准确率. A multi-modality evolutionary Rao-Blackwellized particle filter(MERBPF) algorithm is proposed for mobilerobot fault diagnosis of dead reckoning system.The inconsistency from particle degeneration problem is solved by integrating swarms' intercross and mutation strategy and adding disturbance factors accoding to diversity.Robot moving states are determined by expert rules reasoning mechanism and monitored by each different ERBPF.Finally,the multi-modality ERBPF is formed,which expresses complex logic clearly.The experimental results show that MERBPF maintains a strong robustness even under the strong process noise,which improves the accuracy for the fault diagnosis of robot's dead reckoning investigation system.
出处 《控制与决策》 EI CSCD 北大核心 2010年第12期1787-1792,共6页 Control and Decision
基金 国家自然科学基金重大专项重点项目(90820302)
关键词 故障诊断 移动机器人 RAO-BLACKWELLIZED粒子滤波器 航迹推算系统 Fault diagnosis Mobile-robot Rao-Blackwellized particle filter Investigation of dead reckoning system
  • 相关文献

参考文献14

二级参考文献99

  • 1郭禾,李寒,王宇新,贾棋,刘天阳,唐骏.机器人三维定位系统中关键技术的研究[J].系统仿真学报,2006,18(z1):99-102. 被引量:6
  • 2胡昌华,李学锋,陈新海,许化龙.一种新的基于模型和参数估计的过程故障诊断[J].西北工业大学学报,1995,13(1):61-64. 被引量:4
  • 3黄庆成,洪炳熔,厉茂海,罗荣华.基于主动环形闭合约束的移动机器人分层同时定位和地图创建[J].计算机研究与发展,2007,44(4):636-642. 被引量:8
  • 4余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 5R Smith, M Self, P Cheeseman. Estimating uncertain spatial relationships in robotics [M]. I J Cox, G T Wilfon, editors. Autonomous Robot Vehicles. Germany: Springer-Verlag, 1990: 167-193.
  • 6N Ayache, O Faugeras. Building, registrating, and fusing noisy visual maps [J]. Int. J. Robotics Research (S0278-3649), 1988, 7(6): 45-65.
  • 7R Chatila, J P Laumond. Position referencing and consistent world modeling for mobile robots [C]//Proc. IEEE Int. Conf. Robotics and Automation, 1985. USA: IEEE, 1985: 138-143.
  • 8S J Julier, J K Uhlmann. A counter example to the theory of simultaneous localization and map building [C]//IEEE International Conference on Robotics and Automation, 2001. USA: IEEE, 2001: 4238-4243.
  • 9J A Castellanos, J Neira, J D Tard'os. Limits to the consistency of EKF-based SLAM [C]// Germany: IFAC Symposium on Intelligent Autonomous Vehicles, 2004.
  • 10S Huang, G Dissanayake. Convergence analysis for extended Kalman filter based SLAM [C]//IEEE International Conference on Robotics and Automation, 2006. USA: IEEE, 2006.

共引文献94

同被引文献14

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2萧德云,莫以为.基于混合系统状态估计的故障诊断[J].自动化学报,2004,30(6):980-985. 被引量:7
  • 3段琢华,蔡自兴,于金霞.未知环境中移动机器人故障诊断与容错控制技术综述[J].机器人,2005,27(4):373-379. 被引量:16
  • 4Liu Y T, Jiang J P. Fault diagnosis and prediction of hybrid system based on particle filter algorithmiC]. Proc of IEEE Int Conf on Automation and logistics. Qingdao, 2008: 1491-1495.
  • 5Michael W Hofbaur, Johannes Kob, Gerald Steinbauer, et al. Improving robustness of mobile robots using model based reasoning[J]. J of Intelligent and Robotic Systems, 2007, 48(1): 37-54.
  • 6Ping L, Kadirkamanathan V. Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems[J]. IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2001, 31(3):337-343.
  • 7Qi Ch, Varshney P K, Belcastro C M. Fault detection in dynamic systems via decision fusion[J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(1): 227'242.
  • 8Tafazoli S, Sun X H. Hybrid system state tracking and fault detection using particle filters[J]. IEEE Trans on Control Systems Technology, 2006, 14(6): 1078-1087.
  • 9Siamak Tafazoli, Sun X H. Hybrid system state tracking and fault detection using particle filter[J]. IEEE Trans on Control System Technology, 2006, 14(6): 1078-1087.
  • 10Song Sh M, Wei X Q, Peng L, et al. Unscented particle filter with estimation windows in submarine tracking[C]. Proc of World Congress on Intelligent Control and Automation. Jinan, 20-10: 137-140.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部