期刊文献+

Hilbert空间中拟g-Riesz基与拟Riesz基、g-Besselian框架的关系

Relations among near g-Riesz bases,near Riesz bases and g-Besselian frames in Hilbert spaces
下载PDF
导出
摘要 在Hilbert空间中讨论拟g-Riesz基、拟Riesz基及拟g-Riesz基与g-Besselian框架的关系.证明了由g-框架{Λj}j∈J导出的序列{ujk}j∈J,k∈Kj为拟Riesz基并非{Λj}j∈J为拟g-Riesz基的充要条件,并得到拟g-Riesz基与g-Besselian框架不具有类似于拟Riesz基与Besselian框架的等价关系. The relations among near g-Riesz bases and near Riesz bases,near g-Riesz bases and g-Besselian frames were discussed.That a sequence {Λj}j∈J was a near g-Riesz basis was not the necessary and sufficient condition for the sequence {ujk}j∈J,k∈Kj induced by {Λj}j∈J being a near Riesz basis was proved.That a near g-Riesz basis was not equivalent to a g-Besselian frame was also obtained.
作者 丁明玲
出处 《福建农林大学学报(自然科学版)》 CSCD 北大核心 2010年第6期664-667,共4页 Journal of Fujian Agriculture and Forestry University:Natural Science Edition
基金 福建农林大学青年教师科研基金资助项目(07B23)
关键词 Besselian框架 拟Riesz基 g-Besselian框架 拟g-Riesz基 Besselian frame near Riesz basis g-Besselian frame near g-Riesz basis
  • 相关文献

参考文献15

二级参考文献111

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 271-1283.
  • 3Casazza P. G., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An introduction to frames and Riesz bases, Boston: Birkhauser, 2003.
  • 5Yang D. Y., zhou x. w., Yuan Z. Z., Frame wavelets with compact supports for L^2(Rn), Acta Mathematica Sinica, English Series, 2007, 23(2): 349-356.
  • 6Zhu Y. C., q-Besselian frames in Banach spaces, Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.
  • 7Li C. Y., Cao H. X., Xd frames and Riesz bases for a Banach space, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1361-1366.
  • 8Mallat S., A wavelet tour of signal processing (Second Edition), San Diego: Academic Press, 2000.
  • 9Feichtinger H. G., Grochenig K., Theory and practice of irregular sampling, in: J. J. Benedetto, M. Frazier (Eds.), Wavelets: Mathematics and Applications, Boca Raton: CRC Press. 1994, 305-363.
  • 10Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36:654-679.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部