摘要
在假定激励是参数白噪声的前提下,基于箱体理论,研究了无限维时滞随机关联系统中各子系统的内部联系.利用向量Lyapunov函数法,研究了无限维时滞随机关联系统的群稳定性,分别得到了无限维时滞非线性复合随机系统、无限维时滞弱耦合随机系统,以及无限维时滞车辆跟随随机系统指数群稳定性的充分条件.最后给出一个算例,用以说明定理在实际中便于应用.
In this paper,the composite stochastic systems with time delays in their low order subsystems are studied in terms of their interconnecting structure by using the box theory.The excitations are assumed to be parametric white noises.By using the vector Lyapunov function method,the exponential string stability about the infinite composite systems with time delays is discussed and the sufficient conditions of exponential string stability for some classes of nonlinear composite stochastic systems are established.The case of exponential string stability for coupling systems with time delays and vehicle-following systems with time delays are considered.The given example shows that the theorem is convenient to be applied in practice.
出处
《自动化学报》
EI
CSCD
北大核心
2010年第12期1744-1751,共8页
Acta Automatica Sinica
基金
国家自然科学基金(10772152
60974132)
国家教育部博士基金(200806130003)资助~~
关键词
伊藤方程
时滞
随机关联系统
箱体理论
指数群稳定性
Ito equation
time delay
stochastic interconnected systems
box theory
exponential string stability