期刊文献+

云计算环境下基于改进遗传算法的任务调度算法 被引量:203

Task scheduling algorithm based on improved genetic algorithm in cloud computing environment
下载PDF
导出
摘要 在云计算中面对的用户群是庞大的,要处理的任务量与数据量也是十分巨大的。如何对任务进行高效的调度成为云计算中所要解决的重要问题。针对云计算的编程模型框架,提出了一种具有双适应度的遗传算法(DFGA),通过此算法不但能找到总任务完成时间较短的调度结果,而且此调度结果的任务平均完成时间也较短。通过仿真实验将此算法与自适应遗传算法(AGA)进行比较,实验结果表明,此算法优于自适应遗传算法,是一种云计算环境下有效的任务调度算法。 The number of users is huge in cloud computing, and the number of tasks and the amount of data are also huge. How to schedule tasks efficiently is an important issue to be resolved in cloud computing environment. A Double-Fitness Genetic Algorithm (DFGA) was brought up for the programming framework of cloud computing. Through this algorithm, the better task scheduling not only shortens total-task-completion time and also has shorter average-completion time. There is a contrast between DFGA and Adaptive Genetic Algorithm (AGA) through simulation experiment, and the result is: the DFGA is better, it is an efficient task scheduling algorithm in cloud computing environment.
作者 李建锋 彭舰
出处 《计算机应用》 CSCD 北大核心 2011年第1期184-186,共3页 journal of Computer Applications
基金 四川省科技支撑计划项目(06KJT-013 2009GZ0153)
关键词 云计算 遗传算法 双适应度 任务调度 cloud computing Genetic Algorithm (GA) double-fitness task scheduling
  • 相关文献

参考文献10

  • 1FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 2ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 3BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 4米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 5CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 6KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 7ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.
  • 8DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[ C]//Proceedings of the 6th Symposium on Operating System Design and Implementation. New York: ACM, 2004:137 - 150.
  • 9王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 10The CLOUDS Lab. Gridsim[ EB/OL]. [ 2010 - 06 - 25]. http:// www. cloudbus. org/gridsim/.

共引文献117

同被引文献1356

引证文献203

二级引证文献1049

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部