期刊文献+

核函数的度量研究进展 被引量:13

Survey of research on kernel function evaluation
下载PDF
导出
摘要 核函数的度量(简称核度量)研究两个核函数(或一个核函数与另一个目标函数)之间相似性的度量方法,是核函数研究中的一个重要课题。系统综述了核度量的研究状况以及目前的研究进展,分析了典型核度量方法的特点及不足,并凝炼了其进一步研究的方向。 Kernel function is a key factor to achieve good performance of kernel methods. Kernel function evaluation, which was one of the important research subjects in kernel functions, aimed at measuring the similarity between two kernel functions or between a kernel and a target function. This paper systematically surveyed the research state and advances in kernel function evaluation. Analyzed the typical kernel evaluation methods with the corresponding characteristics and disadvantages. In addition, summarized further research directions which were worth attention.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期25-28,共4页 Application Research of Computers
关键词 核方法 核函数 核度量 支持向量机 分类 kernel method kernel function kernel evaluation support vector machine (SVM) classification
  • 相关文献

参考文献25

  • 1MULLER K R,MIKA S,RTSCH G,et al.An introduction to kernel-based learning algorithms[J].IEEE Trans on Neural Networks,2001,12(2):181-202.
  • 2SHAWE-TAYLOR J, CRISTIANINI N.Kernel methods for pattern analysis[M].Cambridge: Cambridge University Press, 2004.
  • 3MIKA S,RATSCH G,WESTON J,et al.Fisher discriminant analysis with kernels[C]//Proc of IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX.1999:41-48.
  • 4MIKA S, SCHOLKOPF B, SMOLA A J,et al.Kernel PCA and de-noising in feature spaces[C]//Proc of Advances in Neural Information Processing Systems.Cambridge:MIT Press,1998:536-542.
  • 5VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 6CHAPELLE O,VAPNIK V,MUKHERJEE S.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
  • 7CHUNG K M,KAO W C,SUN T,et al.Radius margin bounds for support vector machines with the RBF kernel[J].Neural Computation,2003,15(11):2463-2681.
  • 8常群,王晓龙,林沂蒙,王熙照,Daniel S.Yeung.支持向量分类和多宽度高斯核[J].电子学报,2007,35(3):484-487. 被引量:10
  • 9ALI S,SMITH-MILES K A.A meta-learning approach to automatic kernel selection for support vector machines[J].Neurocomputing,2006,70(1-3):173-186.
  • 10王泳,胡包钢.应用统计方法综合评估核函数分类能力的研究[J].计算机学报,2008,31(6):942-952. 被引量:22

二级参考文献56

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 3王玲,薄列峰,刘芳,焦李成.最小二乘隐空间支持向量机[J].计算机学报,2005,28(8):1302-1307. 被引量:12
  • 4V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 5V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 6O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 7O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 8N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 9K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 10V Vapnik.Universal learning technology:support vector machines[J].NEC Journ of Adv Tech,2005,2(2):137-144.

共引文献82

同被引文献114

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部