期刊文献+

基于D-S证据理论的多发性硬化症病灶分割算法 被引量:5

Segmentation of multiple sclerosis lesions based on D-S evidence theory
下载PDF
导出
摘要 多发性硬化症是一种严重威胁中枢神经功能的疾病,对其病灶自动检测方法的研究正受到越来越多的关注。基于D-S证据理论和模糊C-均值(FCM)聚类算法,提出了一种融合T1和T2加权MR图像信息的多发性硬化症自动分割算法。首先运用FCM聚类算法分别分割T1和T2加权MR图像,然后利用根据D-S证据理论得到的融合两种加权图像信息的基本概率分配函数,实现多发性硬化症病灶的分割。通过对多发性硬化症MR脑部图像的分割实验表明,该算法具有很高的多发性硬化症病灶分割精度,对多发性硬化症的临床辅助诊断具有重要作用。 Multiple sclerosis (MS) is an inflammatory demyelinating disease that would damage central nervous system. There was a growing attention to the segmentation algorithms of MS lesions. This paper developed an automatic algorithm for MS le- sions segmentation by utilizing the fusion T1 and T2-weighted MR brain images based on D-S evidence theory and FCM clustering algorithm. First, segmented T1 and T2 -weighted MR brain images by a FCM clustering algorithm. Then fused the resultant images according to the joint mass of T1 and T2-weighted MR brain images to produce the segmentation of MS lesions. The tes- ting experiments on MR brain images show that the proposed algorithm is able to improve the segmentation accuracy, which is important to assist the diagnosis of MS in clinic.
作者 李彬 刘同
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期378-380,共3页 Application Research of Computers
基金 国家"973"重点基础研究发展规划资助项目(2010CB732500)
关键词 图像分割 D—S证据理论 模糊C-均值聚类 信息融合 多发性硬化症 image Segmentation D-S evidence theory fuzzy C-mean clustering information fusion multiple sclerosis lesions
  • 相关文献

参考文献13

  • 1ARDIZZONE E, PIRRONE R, GAMBINO O, et al.Two channels fuzzy C-means detection of multiple sclerosis lesions in multispectral MR images[C]//Proc of IEEE ICIP.2002:345-348.
  • 2AO B, DEHAK S M, ZHU Y M, et al.Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering[J].Computers in Biology and Medicine, 2000,30(1): 23-40.
  • 3PACHAI C, ZHU Y M, GRIMAUD J, et al.A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI[J].Computerized Medical Imaging and Graphics,1998,22(5):399-408.
  • 4LI L, LI X, LU H, et al.MRI volumetric analysis of multiple sclerosis: methodology and validation[J].IEEE Trans on Nuclear Science,2003,50(5):1686-1692.
  • 5LEEMPUT K V, MAES F, VANDERMEULEN D, et al.Automated segmentation of multiple sclerosis lesions by model outlier detection[J].IEEE Trans on Medical Imaging,2001,20(8): 677-688.
  • 6李彬,陈武凡.基于模糊连接度的多发性硬化症MR图像自动分割算法[J].中国生物医学工程学报,2007,26(5):664-668. 被引量:7
  • 7李彬,陈武凡.基于马尔可夫场的多发性硬化症MR图像分割算法[J].生物医学工程学杂志,2009,26(4):861-865. 被引量:3
  • 8唐良瑞,谢晓辉,蔡安妮,孙景鳌.基于D-S证据理论的指纹图像分割方法[J].计算机学报,2003,26(7):887-892. 被引量:25
  • 9CHAABANE S B, SAYADI M, FNAIECH F, et al.Dempster-Shafer evidence theory for image segmentation: application in cells images[J].International Journal Signal Processing,2009,5(2):126-132.
  • 10DEMPSTER A P.Upper and lower probability induced by a multi valued mapping[J].Annals Mathematical Statistics,1967,38(2):325-339.

二级参考文献20

  • 1ARDIZZONE E, PIRRONE R, GAMBINO O, et al. Two channels fuzzy C-means detection of multiple sclerosis lesions in multispectrai MR images[C]. IEEE ICIP, 2002: 4.
  • 2BOUDRAA A O, DEHAK S M, ZHU Y M, et al. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering [J]. Comput Biol Med, 2000, 30(1):23-40.
  • 3PACHAI C, ZHU Y M, GRIMAUD J, et al. A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI [J]. Comput Med Imaging Graph,1998, 22(5) :399-408.
  • 4LI L, LI X, LU H, et al. MRI volumetric analysis of multiple selerosis) methodology and validation[J]. IEEE Trans. on Nuclear Science, 2003, 50(5): 1686-1692.
  • 5VAN LEEMPUT K, MAES F, VANDERMEULEN D, et al. Automated segmentation of multiple sclerosis lesions by model outlier detection[J]. IEEE Trans Med Imaging, 2001, 20(8) : 677-688.
  • 6ZHU H, BASIR O. Automated brain tissue segmentation and MS Lesion detection using fuzzy and evidential reasoning[C]. 10th IEEE International Conference on Electronics, Circuits and Systems,2003, 3:1070.
  • 7LI S Z. Markov random field modeling in image analysis [M]. Springer-Verlag, 2001: 13.
  • 8DENG H W. CLAUSI D A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme [J]. Pattern Recognition, 2004, 37(12) : 2323-2335.
  • 9WANG Y, ADALI T, XUAN J, et al. Magnetic resonance image analysis by information theoretic criteria and stochastic site models[J]. IEEE Trans Inf Technol Biomed, 2001, 5 (2) : 150-158.
  • 10BESAG J, GREEN P, HIGDON D, et al. Bayesian computation and stochastic system [J]. Statist Sci, 1995,10(1):3- 66.

共引文献32

同被引文献45

  • 1Chen T H, Yin Y H, Huang S F, et al. The smoke detection forearly fire-alarming system base on video processing[C]//Proceedings of International Conference on Intelligent InformationHiding and Multimedia Signal Processing. Los Alamitos:IEEE Computer Society Press, 2006: 427-430.
  • 2Brovko N, Bogush R, Ablameyko S. Smoke detection algorithmfor intelligent video surveillance system[J]. ComputerScience Journal of Moldova, 2013, 21(61): 142-156.
  • 3Krstini- D, Stipani-ev D, Jakov-evi- T. Histogram-basedsmoke segmentation in forest fire detection system[J]. InformationTechnology and Control, 2009, 38(3): 237-244.
  • 4Zhao Y Q. Candidate smoke region segmentation of fire videobased on rough set theory[J]. Journal of Electrical and ComputerEngineering, 2015, 2015: Article No.280415.
  • 5Yu C Y, Fang J, Wang J J, et al. Video fire smoke detection usingmotion and color features[J]. Fire Technology, 2010, 46(3):651-663.
  • 6-etin A E, Dimitropoulos K, Gouverneur B, et al. Video firedetection-review[J]. Digital Signal Processing, 2013, 23(6):1827-1843.
  • 7Jayavardhana G, Marusic S, Palaniswami M. Smoke detectionin video using wavelets and support vector machines[J]. FireSafety Journal, 2009, 44(8): 1110-1115.
  • 8Povey D, Burget L, Agarwal M, et al. The subspace Gaussianmixture model-a structured model for speech recognition[J].Computer Speech and Language, 2011, 25(2): 404-439.
  • 9Pun C M, Wong C F. Fast and robust color feature extractionfor content-based image retrieval[J]. International Journal ofAdvancements in Computing Technology, 2011, 3(6): 75-83.
  • 10Merazi-Meksen T, Boudraa M, Boudraa B. Mathematicalmorphology for TOFD image analysis and automatic crack detection[J]. Ultrasonics, 2014, 54(6): 1642-1648.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部