期刊文献+

基于空间分割的局部KD树动态构建算法 被引量:4

Algorithm of Dynamical Local KD-Tree Construction Based on Spatial Subdivision
下载PDF
导出
摘要 由于点云数据是大量的散乱的没有任何拓扑关系的数据,文中引入KD树,并对其做了相应改进,使得能动态的构建局部KD树。实验结果表明,所提出的基于空间分割的局部KD树动态构建算法既保证了准确性与搜索效率,又具有比较满意的空间复杂度。 The point-cloud data has three characteristics. The first one is that the number of the data is huge. In addition, the data is messy. The last one is that the data don't have any topologic relationship. This text brings in the KD-Tree. Just based on the KD-Tree, we improve it correspondingly and make it can construct the local KD-Tree dynamically. Experimental result indicates that the algorithm this text proposed assure the accuracy and searching efficiency. On the side, the algorithm has the satisfied Space complexity. The algorithm is constructing the local KD- Tree dynamically which based on the space division.
出处 《机械工程师》 2010年第12期30-32,共3页 Mechanical Engineer
关键词 KD树 点云 空间分割 动态构建 KD-Tree point-cloud spatial subdivision dynamical construct
  • 相关文献

参考文献7

二级参考文献19

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2Filip D, Magedson R, Markot R. Surface algorithms using bounds on derivatives [ J]. Computer Aided Geometric Design, 1986,3 (2) : 295 - 311.
  • 3Tatiana S, Evgeny M, Octavian S. A comparison of Gaussian and mean curvatures estimation methods on triangular meshes [ C ]. Taipei : Proceedings of 2003 IEEE International Conference on Robotics & Automation, 2003.
  • 4[1]Guttman A. R-trees: a dynamic index structure for spatial searching [A]. ACM SIGMOD [C]. Waterloo, Ontario, Canada: [s.n.], 1984, 13(2): 47~57.
  • 5[2]Samet H. The design and analysis of spatial data structures [M]. Reading, MA: Addison-Wesley, 1990. 130~153.
  • 6[3]Friedman J H, Bentley J L, Finkel R A. An algorithm for finding the best matches in logarithmic expected time [J]. ACM Trans Math Software, 1977, 3(3): 209~226.
  • 7[4]Sproull R F. Refinements to nearest neighbor searching in k-dimensional trees [J]. Algorithmic, 1991, 15(6):579~599.
  • 8[5]Rousspoulos N, Kelly S, Vincent F. Nearest neighbor queries [A]. In Proceedings of the ACM SIGMOD International Conference on the Management of Data [C]. San Jose, CA, USA: [s.n.], 1995, 24(2): 71~79.
  • 9[6]Hjaltason G R, Samet H. Distance browsing in spatial databases [J]. ACM Transaction on Database Systems, 1999, 24(2):265~318.
  • 10Kobbelt L P, Botsch M, Schwanecke U, et al. Feature sensitive surface extraction from volume data [A]. In:Computer Graphics Proceedings, Annual Conference Series, ACM, SIGGRAPH, Los Angeles, CA, 2001. 57~66

共引文献85

同被引文献48

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部