期刊文献+

关节式准柔性后缘翼型的气动特性分析 被引量:2

Aerodynamic characteristics of multi-sectional variable trailing-edge airfoil
下载PDF
导出
摘要 采用面元法研究了翼面压力分布和关节数量之间的关系,同时也研究了后缘偏角、俯仰力矩系数和转轴力矩随着后缘关节数量的变化规律.计算结果表明:后缘的关节数越多,相对偏转角越小,翼型表面曲率的突变程度越低,相应表面的压力趋于平缓;但多关节式后缘无法克服柔性后缘带来的俯仰力矩偏大的问题,而且转轴力矩随着关节数的增加而逐渐增大。 The relationship between the surface pressure distribution and the number of joints was investigated by use of panel method.Effects of the number of joints on flap angle,pitching moment coefficient and shaft torque were also discussed.Results show that the relative flap angle will decrease with the increasing number of joints of trailing-edge and the wing surface and pressure distribution tend to be smooth.But the problem that the flexible trailing-edge will cause larger pitching moment can not be overcome by multi-sectional trailingedge.The shaft torque will increase with the increasing number of joints.Relevant research results can provide technical support for flexible trailing-edge designing.
作者 尹维龙
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第11期1758-1761,共4页 Journal of Harbin Institute of Technology
基金 中国博士后科学基金资助项目(20080440888)
关键词 柔性后缘 多关节 翼面压力 气动特性 转轴力矩 flexible trailing-edge multi-section surface pressure aerodynamic characteristic shaft torque
  • 相关文献

参考文献11

  • 1PARKER H F. The parker variable camber wing, NACA-77[R]. [S.l.]: NACA, 1930.
  • 2邱涛,何刚.自适应机翼-后缘变弯度机翼结构设计原理初探[C]//航空飞行器发展与空气动力学研讨会论文集.北京:中国航空学会,2006:110-114.
  • 3ROH J H, KIM K S, LEE I. Shape adaptive airfoil actuated by a shape memory alloy and its aerodynamic characteristics [ J]. Mechanics of Advanced Materials and Structures, 2009, 16 (3) : 260 - 274.
  • 4MONNER H P. Realization of an optimized wing camber by using form variable flap structures [ J ]. Aerospace Science Technology, 2001, 5 (7) : 445 -455.
  • 5POONSONG P. Design and analysis of a multi - section variable camber wing [ D ]. Maryland: University of Maryland, 2004.
  • 6杨智春,解江.柔性后缘自适应机翼的概念设计[J].航空学报,2009,30(6):1028-1034. 被引量:23
  • 7ICARDI U, FERRERO L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators [ J ]. Materials and Design, 2009, 30: 4200- 4210.
  • 8BARBARINO S, PECORA R, LECCE L, et al. A novel sma-based concept for airfoil structural morphing [ J ]. Journal of Materials Engineering and Performance, 2009, 18(5 -6) : 696 -705.
  • 9GANDHI F, ANUSONTI-INTHRA P. Skin design stud- ies for variable camber morphing airfoils [ J ]. Smart Mater Struct, 2008, 17 : 1 - 8.
  • 10ANDERSON J D. Fundamentals of aerodynamics [ M ]. New York : McGraw--Hill, 1984 : 189 - 274.

二级参考文献15

  • 1Stanewsky E. Aerodynamic benefits of adaptive wing technology[J]. Aerospace Science Technology, 2000, 4 (7) : 439 -452.
  • 2Stanewsky E. Adaptive wing and flow control technology [J]. Progress in Aerospace Sciences, 2001, 37(7):583- 667.
  • 3Spillman J J. The use of variable camber to reduce drag, weight and costs of transport aircraft[J]. Aeronautical Journal, 1982(1):1-9.
  • 4Gilbert W W. Mission adaptive wing system for tactical aircraft[J].Journal of Aircraft, 1981,18(7) : 597-602.
  • 5Martins A L, Catalano F M. Drag optimization for transport aircraft mission adaptive wing[R]. AIAA-2000-648, 2000.
  • 6Martins A L. Aerodynamic optimization study of a mission adaptive wing for transport aircraft[R]. AIAA-1997 2272, 1997.
  • 7Powers S G, Webb L D, Friend E L, et al. Flight test results from a supereritical mission adaptive wing with smooth variable camber[R]. NASA TM-4415, 1992.
  • 8Kudva J N, Appa K, van Way C B, et al. Adaptive smart wing design for military aircraft requirements, concepts, and payoffs[C]//Proceedings of SPIE. 1995, 2447: 35- 44.
  • 9Gern F H, Inman D J, Kapania R K. Computation of actuation power requirements for smart wings with motphing airfoils[J]. AIAA Journal, 2005,43 (12) : 2481 -2486.
  • 10Florance J P, Burner A W, Fleming G A, et al. Contributions of the NASA Langley Research Center to the DAR PA AFRL NASA Northrop Grumman Smart Wing program[R]. AIAA-2003-1961, 2003.

共引文献22

同被引文献21

  • 1NGUYENN, PRECUP N, URNESJ, SR, eta[. F:xperi mental investigation of a flexible wing with a variable cam her continuous trailing edge flap design[C://32nd A1AA Applied Aerodynamics Conference. Reston: AIAA, 2014.
  • 2LEBOFSKY S, TING E, NGUYEN N. Aeroelastic rood eling and drag optimization of aircraft wing with wtriable camber continuous trailing edge flap:C]//32nd AIAA Ap plied Aerodynamics Conference. Reston: AIAA, 20 Id.
  • 3URNES J, SR, MORRIS C, SHEAHAN J, et a[. Con trol system design for a variable camber continuous :railil:g edge flap system on an elastic wing[ C]//55th AIAA/ ASME/ASCE/AHS/ASC Slrnctures, Structural l)yn;:m ics, and Materials Conference. Reston: AIAA, 2014.
  • 4URNES J, SR, NGUYEN N, IPPOI,I'FO C, e: a[. A mission - Adaptive variable camber flap control system Io optimize high lift and cruise lift-to drag ratios of future. Nq-3 transport aircraft[C]//51st A1AA Aerospace Sci ences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
  • 5SINAPIUS M, MONNER H P, KINTSCHER M, :.l :d. DLR's morphing wing activities wilIfin t}m European net work[J]. Procedia IUTAM, 2014, 10(1): d16-d26.
  • 6AHMED S, GUO S. Optima[ design and analysis of : wing with morphing high lift devices[C://54th AIAA, ASME/ASCE/AHS/ASC Structures, Structural I)ynam its, and Materials Conference. Reston: AIAA, 20101.
  • 7MATTEO N, GUO S, MORISHIMA R. Optimizalhm of leading edge and flap with actuation system for a w:rla ble camber wing [C://53rd AIAA/ASME/ASCF./AtlS ASC Structures, S:ructural Dynamics and Materials (?on ference. Reston: AIAA, 2012.
  • 8DI MATTEO N, GUO S, LI 1). Morphlng trailing :,dgcflap for high lift wing[C]//52nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
  • 9DI MATTEO N, GUO S, AHMED S, et al. Design and analysis of a morphing flap structure for high lift wingEC:// 51st AIAA/ASME/ASCE/AHS/ASC Struc- tures, Structural Dynamics, and Materials Conference. Re- ston: AIAA, 2010.
  • 10PERERA M, HE Y, GUO S. Structural and dynamic analysis of seamless aeroelastie wlngFC://51st AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynam- ics, and Materials Conference. Reston.- AIAA, 2010.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部