期刊文献+

基于K均值算法的彩色编码条纹分色研究 被引量:6

Research on color distinction for color-coded stripe with K-means algorithm
下载PDF
导出
摘要 在基于彩色编码结构光的三维重建中,由于受环境等的影响,拍到的条纹的颜色值已经不完全等于投射的颜色值,但每种颜色在RGB空间还是呈现一定的聚类性。基于这个特性,提出了基于K均值聚类的条纹分色方法。通过K均值聚类算法,对拍摄到的条纹图像进行颜色聚类,拟合出每一种编码颜色的一条直线作为模板,以此来实现了彩色条纹的分色。该方法鲁棒性较强,可以准确地将颜色区分开,为基于结构光的三维重建工作奠定了基础。 In 3D reconstruction based on color-coded structured light,because of the effect of environments,the colors of the captured stripes are not absolutely equal to the projected colors,but the captured colors still have the clustering characteristic.Based on this characteristic,a method of color-distinction with K-means algorithm was proposed.For every pixel's color of the captured stripe pattern,using the K-means clustering algorithm in RGB space,straight lines were fitted to form prototypes of these clusters,each line corresponding to one color,and then the straight lines were used to distinct the colored stripes.The experimental results show that the proposed method is robust,and it can correctly distinct the captured colors,laying the foundation for 3D reconstruction based on structured light.
出处 《计算机应用》 CSCD 北大核心 2010年第12期67-69,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60872099) 科技部国际合作重点项目(2008DFA11030) 山东省重点自然科学基金资助项目(Z2007G06)
关键词 K均值算法 颜色编码 结构光 分色 K-means algorithm color encoding structured light color distinction
  • 相关文献

参考文献5

  • 1ZHANG L, CURLESS B, SEITZ S M, Rapid shape acquisition using color structured light and multi-pass dynamic programming [ C]//First International Symposium on 3D Data Processing Visualization and Transmission. New York: IEEE Press, 2002:24 -36.
  • 2JORDI P, JOAQUIM S, CHRISTOPHE C, et al. Optimized De Bruijn patterns for one-shot shape acquisition [ J]. Image and Vision Computing, 2005, 23(8): 707-720.
  • 3ROBINSON A, ALBOUL L, RODRIGUES M A. Methods for indexing stripes in uncoded structured light scanning systems [ J]. Journal of Winter School of Computer Graphics, 2004, 12(3) : 371 - 378.
  • 4刘维一,王肇圻,母国光,方志良.彩色编码投影光栅三维轮廓术中分色问题的研究[J].光学学报,2001,21(4):454-458. 被引量:13
  • 5郏宣耀.基于改进C均值聚类的自适应图像分色算法[J].计算机与数字工程,2006,34(4):56-58. 被引量:1

二级参考文献7

共引文献12

同被引文献76

  • 1李学勇,路长厚,李国平.基于二阶梯度图的Canny检测边缘修补方法[J].光电子.激光,2007,18(3):377-380. 被引量:17
  • 2McGAVIN D, BERNARD S. Color figures in B J: RGB versus CMYK[J]. Biophysical Journal, 2005, 88(2): 761-762.
  • 3DAI J B, ZHOU S X. Computer aid pseudo-coloring coding of gray image-complementary coloring coding technique[ J]. SPIE, 1996, 2896: 181-191.
  • 4Monika Sester, Claus Brenner. A vocabulary for a multiscale processdescription for fast transmission and continuous visualization of spatialdata [J]. Computers and Geosciences, 2009 ,35( 11) :2177 ~2184.
  • 5Zhang Liqiang, Yang Chongjun, Tong Xiaohua. Visualization of largespatial data in networking environments [ J]. Computers and Geosci-ences, 2007,33(9) :1130-1139.
  • 6Ohno N,Kageyama A. Scientific visualization of geophysical simula-tion data by the CAVE VR system with volume rendering [ J ]. Physicsof the Earth and Planetary Interiors, 2007, 163 (1 —4) :305 -311.
  • 7Caumon G, Collon-Drouaillet P, Le C. Carlier de Veslud. Surface-Based 3D Modeling of Geological Structures[ J]. Mathematical Geosci-ences, 2009, 41(8):927-945.
  • 8Lee Kwang Hee, Je Changsoo,Lee Sang Wook. Color-Stripe StructuredLight Robust to Surface Color and Discontinuity [ J]. Lecture Notes inComputer Science,2007,4844:507 -516.
  • 9Dai J B,Zhou S X. Computer aid pseudo-coloring coding of gray im-age-complementary coloring coding technique [ J ] . SPIE, 1996 , 2896 :181-191.
  • 10Yang Ming-Hsuan, David Kriegman, Narendra Ahuja. Face DetectionUsing Multimodal Density Models [ J ]. Computer Vision and Image Un-derstanding, 2001,84(2) :264 -284.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部