期刊文献+

基于扩展有限元法的黏聚性裂缝模型的混凝土梁断裂过程模拟 被引量:5

Simulation on concrete beam crack process using cohesive crack model based on extended finite element method
下载PDF
导出
摘要 为研究混凝土梁的断裂过程,提出用基于二维扩展有限元法(eXtended Finite ElementMethod,XFEM)的黏聚性裂缝模型模拟混凝土简支梁在集中载荷作用下的断裂过程.推导考虑近裂尖奇异性的基于XFEM的黏聚性裂缝模型,得出裂缝开度随裂缝长度的变化曲线;对上述模型与相关文献用有限元结合节点释放技术对相同时间的裂缝扩展的计算结果进行比较,二者结果吻合良好,并与实际裂缝扩展过程相符.计算结果证实基于XFEM的黏聚性裂缝模型能有效进行混凝土梁的断裂过程模拟. To study the crack process of concrete beam,the crack process of simply supported beam under concentrated load is simulated by using cohesive crack model based on 2D eXtended Finite Element Method(XFEM).The cohesive crack model based on XFEM considering near-tip singular behavior is derived,and the curves of crack opening with the change of crack length is obtained;the results obtained from the model is consistent with that of the literatures,in which finite element node release technology is used to simulate the crack propagation in the same time,and the actual cracking process.The computation results indicate that cohesive crack model based on XFEM can simulate the concrete cracking process effectively.
出处 《计算机辅助工程》 2010年第4期29-33,共5页 Computer Aided Engineering
基金 国家自然科学基金(50879024) 高等学校博士学科点专项科研基金(20070294023) 水文水资源与水利工程科学国家重点实验室专项基金(2009586012)
关键词 黏聚性裂缝 混凝土梁 断裂 扩展有限元法 cohesive crack concrete beam crack extended finite element method
  • 相关文献

参考文献16

  • 1YANG B,RAVI-CHANDAR K.A single-domain dual-boundary-element formulation incorporating a cobesive zone model for elastic static cracks[J].Int J Fracture,1998,93(1):115-144.
  • 2BELYTSCHKO T,ORGAN D,GERLACH C.Element-free galerkin methods for dynamic crack in concrete[J].Comput Methods Appl Mech & Eng,2000,187(3-4):385-399.
  • 3BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].Int J Numer Methods Eng,1999,45(5):601-620.
  • 4NAGASHIMA T,OMOTO Y,TANI S.Stress intensity factor analysis of interface cracks using XFEM[J].Int J Numer Methods Eng,2003,56(8):1151-1173.
  • 5STOLARSKA M,CHOPP D,MOES N,et al.Modelling crack growth by level sets in the extended finite element method[J].Int J Numer Methods Eng,2001,51(8):943-960.
  • 6DOLBOW J,MOES N,BELYTSCHKO T.An extended finite element method for modeling creek growth with frictional contact[J].Comput Methods Appl Mech & Eng,2001,190(51-52):6825-6846.
  • 7RETHORE J,GRAVOUIL A,COMBESCURE A.An energy-conserving scheme for dynamic crack growth using the extended finite element method[J].Int J Numer Methods Eng,2005,63(5):631-659.
  • 8CARPINTERI A,COLOMBO G.Numerical analysis of catastrophic sorting behaviour[J].Computers & Structures,1989,45 (5):607-636.
  • 9PLANAS J,ELICES M.Asymptotic analysis of a cohesive crack:1.theoretical background[J].Int J Fracture,1992,55 (2):153-177.
  • 10PLANAS J,ELICES M.Asymptotic analysis of a cohesive crack:2.influence of the softening curve[J].Int J Fracture,1993,64(3):221-237.

二级参考文献16

  • 1Ortiz M,Leroy Y,Needleman A. A finite element method for localized failure analysis[J]. Computer Methods in Applied Mechanics and Engineering,1987,61:189-214.
  • 2Belytschko T,Fish J,Engelmann B E. A finite element with embedded localization zones[J]. Computer Methods in Applied Mechanics and Engineering,1988,70:59-89.
  • 3Dvorkin E N,Cuitino A M,Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[J]. Computer Methods in Applied Mechanics and Engineering,1990,90:829-844.
  • 4Lotfi H R,Shing P B. Embedded representations of fracture in concrete with mixed finite elements[J]. International Journal for Numerical Methods in Engineering,1995,38:1 307-1 325.
  • 5Simo J C,Oliver J,Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent inelastic of solids[J]. Computational Mechanics,1993,12:277-296.
  • 6Bolzon G,Corigliano A. Finite element with embedded displacement discontinuity:a generalized variable formulation[J]. International Journal for Numerical Methods in Engineering,2000,49(10): 1 227-1 266.
  • 7Camacho G T,Ortiz M. Computational modeling of impact damage in brittle materials[J]. International Journal of Solids and Structures. 1996,33:2 899-2 938.
  • 8Jirasek M. Comparative study on finite elements with embedded discontinuities[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:307-330.
  • 9Nicolas M,John D,Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
  • 10Wells G N,Sluys L J. A new method of modeling cohesive cracks using finite elements[J]. International Journal for Numerical Methods in Engineering,2001,50:2 667-2 682.

共引文献26

同被引文献32

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部