期刊文献+

基于FCM聚类的复杂交通网络节点重要性评估 被引量:12

Traffic Complex Network Node Importance Assessment Based on FCM Clustering
下载PDF
导出
摘要 网络关键节点的评估与选择对于区域交通信号控制系统的实施具有重要意义,国内外广泛应用的SCOOT/SCATS等区域交通控制系统关键交叉口的选取往往以交通流量大小、节点间距等为参考,较大程度上依赖经验.本文以节点连接度、节点介数和交叉口高峰小时交通流量为评价指标,应用FCM模糊聚类方法给出交叉口的重要性分类方法,实现城市复杂交通网络的关键节点选择,并以北京市长安街沿线周围交叉口为例进行了实证研究.研究表明:当聚类数取3、4和5时长椿街路口、府右街南口和和平门路口均呈现出极高的聚集性,且聚类中心体现的交通特性与实际工程中的关键交叉口基本相同.本文方法可为区域交通控制系统的关键节点选择提供理论基础. It is very important to select hub junction in urban traffic complex network for regional traffic signal control.Generally,SCOOT/SCATS systems select traffic flow and distance between junctions as reference which means engineers' experience should play importance roles in practice.In this paper,node degree,node betweenness and high peak hour traffic flow are selected as indexes for traffic network node importance assessment process.And FCM clustering method is applied to analyze which one junction could be act as a hub node for regional traffic control.Moreover,a regional urban network including almost fifty nodes around Chang'an Street in Beijing of China is used as trail area to test upper approach.Data result shows Changchunjie,FuyoujieNankou and Hepingmen junction have high clustering characteristics when clustering number are 3,4 and 5.And the clustering center shows very similar prosperities with real hub node in practice.In conclusion,FCM clustering analysis could provide theoretical support for traffic weighted complex network hub node selection.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第6期169-173,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 国家科技支撑计划项目(2006BAG01A01) 北京市属市管高等学校人才强教计划资助项目(PHR20090503)
关键词 系统工程 城市交通 节点重要性 FCM聚类 复杂交通网络 节点介数 systems engineering urban traffic node importance FCM clustering complex traffic network node betweenness
  • 相关文献

参考文献7

二级参考文献26

  • 1谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):79-83. 被引量:257
  • 2吴俊,谭跃进,邓宏钟,迟妍.考虑级联失效的复杂负载网络节点重要度评估[J].小型微型计算机系统,2007,28(4):627-630. 被引量:41
  • 3刘艳,顾雪平.基于节点重要度评价的骨架网络重构[J].中国电机工程学报,2007,27(10):20-27. 被引量:102
  • 4WATTS D J,STROGATZ S H. Collective dynamics of' small-world' networks[ J]. Nature, 1998, 393:440-442
  • 5WEST D B. Introduction to graph theory[ M]. [ s. l. ] : Prentice Hall, 2001.
  • 6CALLAWAY D S, NEWMAN M E J, STROGATEZ S H, et al. Network robustness and fragility: percolation on random graphs [ J ] . Phys. Rev. Lett. , 2000, 85 ( 25 ) : 5468-5471.
  • 7FREEMAN L C. A set of measures of centrality based upon betweenness[J]. Sociometry, 1977, 40( 1 ) : 35-41.
  • 8Corley H W, Sha D Y. Most vital links and nodes in weighted networks [J]. Oper Res Lett, 1982, 1:157 - 160.
  • 9Nardelli E, Proietti G, Widmayer P. Finding the most vital node of a shortest path [J]. Theoretical Computer Science, 2001, 296(1): 167- 177.
  • 10Erdos P, Renyi A. On random graphs [J]. Publ Math, 1959, 6:290 - 297.

共引文献339

同被引文献103

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部