期刊文献+

水声信道快速收敛自适应均衡算法 被引量:11

Fast convergence adaptive equalization algorithm for underwater acoustic channels
下载PDF
导出
摘要 从提高自适应均衡算法水声信号收敛性能的角度出发,提出了一种新的快速收敛水声信道自适应均衡算法。该算法将改进的归一化均方误差算法和判决反馈均衡器结构有机结合,在不增加计算量的前提下,很好地实现了不同水声信道的自适应均衡,易于算法的硬件实现。仿真结果表明,该算法计算量同归一化最小均方(normalized least mean square,NLMS)误差算法的计算量相当,但在稳态误差和收敛速度上有很大优势;收敛性能与自适应调整最小二乘回归-判决反馈均衡器(variable tap-length decision feed-back equalizer based on recursiveleast square,RLS-DFE)算法接近,却克服了RLS-DFE算法计算量大,不利于硬件实现的实际问题。提出的算法为水声通信提供了一种性能优良的可实现方法,具有较高的应用价值。 A new fast adaptive equalization algorithm is proposed to improve the convergence ability in equalizing underwater acoustic signal.The algorithm,which combines the modified normalized square error algorithm with decision feedback equalizer structure,realizes the adaptive equalization of various underwater acoustic channels and is prone to hardware realization on the premise of non-increasing computational quantity.The simulation results show that computational quantity of the proposed algorithm is comparable to normalized least square error(NLMS),but mean square error(MSE) performance and convergence rate are superior to NLMS on a large extend;the convergence ability of the proposed algorithm is close to variable tap-length decision feed-back equalizer based on recursive least square(RLS-DFE) algorithm,but it overcomes the fact problem of great computational quantity and improbable hardware realization which existed in RLS-DFE algorithm.This algorithm is a realizable method with good performance in underwater acoustic communication.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第12期2524-2527,共4页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2007AA01Z309)资助课题
关键词 水声通信 归一化 变步长 收敛速度 判决反馈 underwater acoustic communication normalized variable step-size convergence rate decision feedback
  • 相关文献

参考文献20

  • 1Kamenetsky M.Accelerating the conver-gence of the LMS adaptive algorithro[D].Paio Alto:Stanford University,2005.
  • 2lstepanion R S H.Stojanovic M.Under-water acoustic digital signal processing and communication systems[M].London:Kluwer Academic publishers,2002:4-16.
  • 3Zou K.Zhao X B.A new modified robust variable step size LMS algorithm[C] // Proc.of Industrial Electronics and Applications,2009:2699-2703.
  • 4Dornean I,Topa M.Kirei B S,et al.HDL implementation of the variable step Size N-LMS adaptive algorithm[C] // Proc.of Automation,Quality and Testing,Robotics,2008,TOME-Ⅲ:243-246.
  • 5Reddy E P,Das D P,Prabhu K M M.Fast exact multi-channel FSLMS algorithm for active noise control[J].Signal Processing,2009,89(5):952-956.
  • 6Gupta A,Joshi S.Variable step-size LMS algorithm for fractal signals[J].IEEE Trans.on Signal Processing,2008,56 (4):1411-1420.
  • 7兰瑞明,唐普英.一种新的变步长LMS自适应算法[J].系统工程与电子技术,2005,27(7):1307-1310. 被引量:32
  • 8张雯雯,司锡才,柴娟芳,李利.一种新的变步长LMS自适应谱线增强算法[J].系统工程与电子技术,2009,31(1):33-35. 被引量:10
  • 9白晶,尹怡欣,郝智红,孙和平.基于变论域的变步长LMS算法[J].北京科技大学学报,2009(1):108-111. 被引量:1
  • 10Rao H I K.Farhang-Boroujeny B.Fast LMS/Newton algorithms for stereo-phonic acoustic echo cancelation[J].IEEE Trans.on Signal Processing,2009,57(8):291 9-2930.

二级参考文献66

共引文献71

同被引文献55

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部