期刊文献+

溶液中丙酸红外羰基振动频变与溶剂参数相关性分析 被引量:1

Correlative analysis between carbonyl stretching vibration frequency of propionic acid in solution and solvent constants
下载PDF
导出
摘要 运用KBM模型、电子给体-受体模型和线性溶剂化能关系式(LSER)对丙酸在15种不同有机溶剂中羰基伸缩振动频率进行相关分析.结果表明,在有机溶剂中丙酸羰基伸缩振动频率的多参数LSER模型的相关性明显优于单参数KBM模型和电子给体-受体模型;LSER模型的标准偏差明显小于KBM模型和电子给体-受体模型.LSER模型能较好解释在有机溶剂中引起丙酸羰基伸缩振动频率变化的主要原因,导致游离丙酸羰基伸缩振动频率变化的是溶质-溶剂之间的氢键作用和偶极-偶极作用,丙酸二聚体羰基伸缩振动频率变化的主要原因是偶极-偶极作用.LSER模型用于预测在有机溶剂中丙酸羰基伸缩振动频率时具有较好的准确性和稳定性. The carbonyl stretching vibration frequencies of propionic acid (PA) in 15 different organic solvents were analyzed by KBM modeling, the donor-acceptor modeling and linear solvation energy relationships (LSER) respectively. The experimental results showed the carbonyl stretching vibration frequency of PA exhibits a best correlation using the LSER with multi-variable control techniques. The standard deviation of the LSER is obviously smaller than that of KBM modeling and the donor-acceptor modeling. Furthermore, LSER can be used to explain the main reasons of causing the carbonyl stretching vibration frequencies shift for PA in organic solvents. The main reasons for free-PA are the intermolecular hydrogen bond and the dipole-dipole interaction between free-PA and solvents, and the one for PA dimer is the dipoledipole interaction between PA dimer and solvents. The LSER is successful with good stability and accuracy for predicting of the carbonyl stretching vibration frequency of either free-PA or PA dimer in organic solvents.
出处 《浙江工业大学学报》 CAS 北大核心 2010年第6期611-615,共5页 Journal of Zhejiang University of Technology
关键词 丙酸 羰基 红外光谱 溶剂效应 KBM模型 电子给体-受体模型 线性溶剂化能关系式 propionic acid carbonyl infrared spectra solvent effect KBM modeling donor-acceptor modeling linear solvation energy relationships
  • 相关文献

参考文献17

  • 1吴鑫干,刘含茂.丙酸的合成与应用[J].化工技术经济,2002,20(4):14-18. 被引量:8
  • 2GUTMANN V.The donor-acceptor to molecular interactions[M].New York:Plenum Press,1978.
  • 3ONSAGER L.Electric moments of molecules in liquids[J].J Am Chem Soc,1936,58(8):1486-1493.
  • 4WEST W,EDWARDS R T.On the theory of optical rotatory power[J].J Chem Phys,1937,5(1):14-22.
  • 5TAPIA O,GOSCINSKI O.Self-consistent reaction field theory of solvent effects[J].Mol Phys,1975,29(6):1653-1661.
  • 6ALLERHAND A,SCHLEYER P V R.Solvent effects in infrared spectroscopic studies of hydrogen bonding[J].J Am Chem Soc,1963,85(4):371-380.
  • 7KAMLET M J,TAFT R W.The solvatochromic comparison method I.the(-scale of solvent hydrogen-bond acceptor(HBA)basicities[J].J Am Chem Soc,1976,98(2):377-383.
  • 8TAFT R W,KAMLET M J.The solvatochromic comparison method.2.The(-scale of solvent hydrogen-bond donor(HBD)acidities[J].J Am Chem Soc,1976,98(10):2886-2894.
  • 9KAMLET M J,ABBOUD J L,TAFT R W.The solvatochromic comparison method 6.The(-scale of solvent polarities[J].J Am Chem Soc,1977,99(18):6027-6038.
  • 10KAMI.ET M J,CARR P W,TAFT R W,et al.Linear solration energy relationships.13.Relationship between the Hildebrand solubility parameter,(H,and the solvatochromic parameter,π[J].J Am Chem Soc,1981,103(20):6062-6066.

二级参考文献25

  • 1李润卿,何跃华,李玉荷,陈惠明,相强芳.红外光谱中溶剂效应机理初探──配位机制的提出[J].光谱学与光谱分析,1995,15(6):33-40. 被引量:3
  • 2蒋华良,陈凯先,嵇汝运.溶剂效应量子化学研究进展[J].化学通报,1995(4):1-6. 被引量:17
  • 3-.化工百科全书[M].化学工业出版社,1990..
  • 4[1]Kirkwood J G. J. Phys. Chem., 1937, 5:14
  • 5[2]Onsager L. J. Am. Chem. Soc., 1936, 58:1486
  • 6[3]Nyquist R A. Appl. Spectrosc., 1990, 44(3):426~433
  • 7[4]Fawcett W R, Kloss A A. J. Phys. Chem., 1996, 100(6):2019~2024
  • 8[5]Cha D K, Kloss A A, Tikanen A C, Fawcett W R. Phys. Chem. Chem. Phys., 1999, 1:4785~4790
  • 9[6]Gutmann V. The Donor-Acceptor Approach to Molecular Interactions. Plenum Press: New York, 1978: 29
  • 10何宗士,有机化学的相关分析.线性自由能关系引论,1990年

共引文献12

同被引文献18

  • 1贾廷见,李朋伟,尚治国,张玲,莫育俊.糠醛分子的拉曼光谱与红外光谱研究[J].光散射学报,2007,19(1):1-5. 被引量:25
  • 2俞凌翀.基础有机化学[M].北京:高等教育出版社,2001.
  • 3GAJEWSKI J J,NGERNMEESRI P.Equilibrium constants between boron trifluoride etherate and carbonyl compounds in chloroform solution[J].Organic Letters,2000,2 (18):2813-2815.
  • 4REICHARDT C.Solvents and solvent effects in organic chemistry[M].2nd.New York:Weinheim,1988.
  • 5MOMANY F A,APPELL M,WILLETT J L,et al.B3LYP/6-311 + + G** geometry-optimization study of pentahydrates of a-and β-d-glucopyranose[J].Carbohydrate Research,2005,340(9):1638-1655.
  • 6APPELL M,STRATI G,WILLETT J L,et al.B3LYP/6 311+ + G** study of alpha and beta Dglucopyranose and 1,5-anhydro-D-glucitol:4C1 and 1C4 chairs,(3,O) B and B (3,O) boats,and skew-boat conformations[J].Carbohydrate Research,2004,339 (3):537-551.
  • 7GECE G,BILGIC S.Molecular-Level understanding of the inhibition efficiency of some inhibitors of zinc corrosion by quantum chemical approach[J].Industrial & Engineering Chemistry Research,2012,51 (43):14115-14120.
  • 8CASEY G,WENTWORTH G R,HAMILTON I P,et al.Quantum chemical calculations on solvation effects for selected photoreactive aromatic organic molecules of atmospheric relevance[J].Computational and Theoretical Chemistry,2011,965(2):346-352.
  • 9SISKOS M G,KONTOGIANNI V G,TSIAFOULIS C G,et al.Investigation of solute-solvent interactions in phenol compounds:accurate ab initio calculations of solvent effects on 1H NMR chemical shifts[J].Organic & Biomolecular,2013,11:7400-7411.
  • 10MILANI A,CASTIGLIONI C,DI DEDDA E,et al.Hydrogen bonding effects in perfluorinated polyamides:an investigation based on infrared spectroscopy and density functional theory calculations[J].Polymer,2010,51(12):2597-2610.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部