期刊文献+

基于属性重要性的加权支持向量机及其应用 被引量:3

Importance of Attributes-Based Weighted Support Vector Machine and Its Application
下载PDF
导出
摘要 针对珠江水质预测中的大量不确定和模糊因素,提出了一种基于属性重要性的加权支持向量机水质预测模型.首先通过粗糙集理论对原有的评价指标体系进行约简,由原来的8个预测指标约简为7个指标,被约去的属性正是网站公布数据中缺失的属性;同时计算出各属性的重要性,对重要的指标赋予较大的权重,构造基于属性重要性的加权支持向量机,这不同于以前的针对样本作用不同而构造的加权支持向量机.本文以珠江流域重点断面水质预测为例,对近2年数据进行分析,结果显示了该模型的有效性. In view of many uncertainty and fuzzy factors in water quality prediction,a new weighted support vector machine water quality prediction model based on the importance of attributes is proposed in this paper.By attribute reduction,the prediction indexes are reduced to seven indexes from the original eight indexes,moreover,the reduced attribute is also the missed attribute reported in the official website;the weight coefficient of each index is calculated by attribute importance,the larger weight coefficient is proposed to give the important index,then we can construct the weighted support vector machine,which is different from the sample-based weighted support vector machine.Taking Pearl River water quality prediction for example,we analyze its nearly two years data,and the prediction result shows the efficiency and feasibility of the proposed model.
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2011年第1期65-69,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然基金资助项目(10771213) 中国农业大学博士科研基金资助项目(2007038) 中央高校科研业务专项基金资助项目(2009-2-05)
关键词 评价指标 水质预测 粗糙集理论 属性重要性 加权支持向量机 evaluation index water quality prediction rough set theory importance of attributes weighted support vector machine
  • 相关文献

参考文献8

二级参考文献61

共引文献51

同被引文献25

  • 1刘爽,贾传荧,陈鹏.一种自动选择参数的加权支持向量机算法[J].计算机工程与应用,2006,42(2):64-66. 被引量:9
  • 2王浩,王行愚,牛玉刚.基于加权系数寻优的回归型加权支持向量机[J].计算机仿真,2006,23(7):111-114. 被引量:9
  • 3金凌霄,张国基.基于特征加权的支持向量回归机研究[J].计算机工程与应用,2007,43(6):42-44. 被引量:3
  • 4杨明,张凤鸣,胡永峰.基于灰色向量机理论的建模预测研究及应用[J].计算机工程与设计,2007,28(14):3297-3298. 被引量:7
  • 5Zadeh L A. Fuzzy sets and information granularity [ C ]// Gupta M, Ragade R, Yager R. Advances in Fuzzy Set Theory and Applications. North-Holland: Amsterdam Publishing CO, 1979 : 3-18.
  • 6Pawlak Z. Rough sets[J]. International Journal of Com- puter and Information Science, 1982,11 (5) :341-356.
  • 7Zadeh L A. Fuzzy logic-computing with words[ J ]IEEE Transaction on Fuzzy Systems, 1996,4 ( 2 ) : 103-111.
  • 8Zadeh L A. Towards a theory of fuzzy information granu- lation and its centrality in human reasoning and fuzzy logic [ J ] Fuzzy Set and Systems, 1997, 90 : 111-121.
  • 9Yao Yiyu. A partition model of granular computing [ M ]//James F Peters, Andrzej Skowron. Transactions on Rough Sets I. Heidelberg:Springer, 2004:232-253.
  • 10Zhu William. Relationship among basic concepts in cov- ering-based rough sets [ J ]. Information Sciences ,2009,179 ( 14 ) : 2478-2486.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部