期刊文献+

分数微积分用于分形压缩图像嵌入灰度水印 被引量:3

Using fractional calculus to embed gray image as watermark into fractal compressed image
下载PDF
导出
摘要 传统的基于分形编码的水印技术一般嵌入0,1序列,没有实现灰度图像嵌入。本文在研究正交化分形编码的基础上,利用正交化分形编码参数在迭代过程中的不变性,构造出水印嵌入变换函数,使水印直接嵌入解码参数。分数阶微分序列的引入有效解决了嵌入水印的保密性问题,使得在分形编码的过程中嵌入灰度水印的方法具有了可行性,实现了图像压缩与水印嵌入一体化技术。实验结果表明,水印嵌入对宿主图像的分形编码质量几乎没有影响,水印提取质量良好,且采用分数阶微分序列对灰度水印进行加密效果较好。 For traditional watermarking techniques based on fractal coding,watermarking format is limited to binary sequence 0,1,thus incapable of gray-scale image embedding.In this paper,a novel algorithm feasible for gray-scale watermarking embedding is proposed.To embed watermarking directly into decoding parameters,the host image is encoded with orthogonal fractal coding techniques.Because of the mean-invariant characteristics of fractal encoding parameters during iterations,the watermarking can be embedded into them.On the other hand,fractional calculus pseudo-random sequence has solved the problem that how to enhance the security of embedded watermarking and makes it possible for gray-scale watermark to be embedded during fractal encoding process.Experimental results indicate that proposed algorithm brings little contamination upon the original image,and the extracted watermarking is of good quality.The encryption for gray-scale watermark with fractional differential sequence shows good performance.
出处 《信息与电子工程》 2010年第6期702-707,共6页 information and electronic engineering
基金 江苏省自然科学基金资助项目(BK2001047) 航空科学基金资助项目(04D52032)
关键词 分数阶微分 分形图像压缩 灰度水印 fractional calculus fractal compressed image gray image watermark
  • 相关文献

参考文献13

  • 1刘勍,张在峰,马义德,袁敏.基于分形理论的图像压缩编码技术[J].信息与电子工程,2004,2(4):246-251. 被引量:5
  • 2陈作平,叶正麟,郑红婵,赵红星.基于K均值聚类的快速分形编码方法[J].中国图象图形学报,2007,12(4):586-591. 被引量:8
  • 3Paute J,Jordan F.Using fractal compression scheme to embed a digital signature into image[C]//Proc.SPIE Photonics East Symposium.Boston,MA:[s.n.].1996:18-22.
  • 4张敏瑞,明岸华.基于分形的数字图像水印技术[J].航空计算技术,2004,34(2):1-5. 被引量:2
  • 5Oldham K B,Spanier J.The Fractional Calculus[M].New York and London:Academic Press,1974.
  • 6袁晓,陈向东,李齐良,张蜀平,蒋亚东,虞厥邦.微分算子与子波构造[J].电子学报,2002,30(5):769-773. 被引量:30
  • 7Jia Huading,Pu Yifei.Application and Numerical Implementation of Fractional Calculus to Digital watermark[C]//Proceedings of 8th International Conference on Signal Processing.Beijing:[s.n.],2006:16-20.
  • 8Pi Minghong,Li Chunhuang.A Novel Fractal Image Watermarking[J].IEEE Transactions on multimedia,2006,8(3):488-499.
  • 9Marcia Kleinz,Thomas J Osler.A child's garden of fractional derivatives[J].The College Mathematics Journal,2000,31(2):82-88.
  • 10Kostadin Trencevski,Zivorad Tomovski.On some fractional derivatives of functions of exponential type[J].Ser.Mat.,2002(13):77-84.

二级参考文献68

  • 1L.科恩 白居宪(译).时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 2袁晓.子波算法、构造、解析子波变换及其在信号处理中的应用[M].成都:电子科技大学,1998..
  • 3王晓茹.基于小波变换和神经网络的高压电网故障信号处理与保护研究[M].成都:西南交通大学,1998..
  • 4陈向东 袁晓 等.高斯函数、子波及其局域化特征[J].信号处理,2001,17:66-69.
  • 5Puate J, Jordan F. Using fractal compression scheme to embed a digital signature into an image[A] ,. In: Proceedings of SHE Photonics East' 96 Symposium [C]. Boston,Massachusetts, 1996:103 - 124.
  • 6ZhenYao. Fixed point in fractal image compression as waterJunking[A] ,Proceedings of International Conference on Image Processing[C]. Vol. 2 ,pp. 475 -478 ,Sept. 14 - 17,2003.
  • 7Yao Zhao, Qiang Ma, Baozong Yuan. Digital waterJunk based on LIFS [A]. , In: Proceedings of ICSP2000 [C].Beijing, China ,2000 :1281 - 1284.
  • 8S Tsekeridou, I Pitas, Wavelet- based self- similar waterJunking for still images , Circuits and Systems, 2000.Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on ,Volume: 1 ,28 - 31 Jun 2000,Pages:220 - 223 vol. 1.
  • 9S. Tsekeridou, I. Pitas, Embedding self- similar waterJunks in the wavelet domain , Acoustics, Speech, and Signal Processing, 2000. ICASSP 00. Proceedings. 2000IEEE International Conference on ,Volume: 6 ,5-9 June 2000 , Pages :1967 - 1970 vol. 4
  • 10Zhicheng Ni, Eric Sung, Yun Q. shi. Enhancing Robustness of Digital WaterJunking against Geometric Attack Based on Fractal Transform [A]. In: IEEE International Conference on Multimedia and Expo[C]. New York,USA,2000:1033 - 1036.

共引文献41

同被引文献11

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部