期刊文献+

基于QoS-PSO的无线传感器网络路由方法 被引量:4

Routing Method in Wireless Sensor Network Based on Quality of Service and Particle Swarm Optimization
下载PDF
导出
摘要 过去,大部分的无线传感器网络(WSN)的应用局限于数据的采集,比较少地关注网络中各节点的协同合作,现有的WSN路由算法对于网络的动态性的支持力度非常弱,不能满足分布式的无线网络和无线传感器网络应用对于网络服务质量的需求,路由优化能力不足.通过综合考虑多个服务质量指标,然后基于智能遗传算法微粒群算法进行路由寻优,为路由寻优提供了很好的搜索能力.仿真结果表明,基于微粒群优化算法,以综合服务质量(QoS)指标为目标的路由很好地改善了其服务质量性能. In the past,most of the wireless sensor network(WSN) applications were limited to data collection,and less attention was paid on the collaboration in the network.The weak support of the existing WSN routing algorithm for dynamic in network can not meet the service requirements of the distributed wireless networks and wireless sensor network applications.Based on a comprehensive consideration of the quality of service(QoS) indicators,and a routing search according to an intelligent particle swarm optimization(PSO)algorithm.New algorithm provides a very good search capabilities.The simulation results show that the PSO-based routing with a comprehensive QoS indicator improves well the service quality.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期1846-1850,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(61073090) 上海市科学技术委员会科研计划项目(09DZ1122300 09510701300) 上海市重点学科建设项目(B04) 广东省教育部产学研结合项目(2009GJE00026 2009B090300429)
关键词 微粒群算法 无线传感器网络 综合服务质量 智能Agent路由 仿真环境 particle swarm optimization wireless sensor network comprehensive quality of service intelligent Agent routing simulation environment
  • 相关文献

参考文献7

  • 1Akyildiz I,Su W,Sankarasubramaniam Y,et al.Wireless sensor networks:a survey[J].Computer Networks,2002,38(4):393.
  • 2Chong C Y,Kumar S.Sensor networks:evolution,opportunities,and challenge[J].Proceedings of the IEEE (S0018-9219),2003,91(8):1247.
  • 3Estrin D,Govindan R,Heidemann J.Next century challenges:scalable coordination in sensor networks[C]∥Proceedings of the 5th ACM/IEEE International Conference on Mobile Computing and Networking.Seattle:ACM,1999:263-270.
  • 4Crawley E,Nair R,Rajagopalan B,et al.A framework for QoSbased routing in the internet[EB/OL].[1998-08-28].http:∥www.ietf.org/rfc/rfc.2386.txt.
  • 5李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:303
  • 6许福永,梅中磊.基于现代超启发式搜索方法的计算机通信网络中路由选择优化的研究[J].兰州大学学报(自然科学版),2001,37(2):63-70. 被引量:7
  • 7Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]∥Proc of the IEEE Int Conf on Neural Networks.Piscataway:IEEE Service Center,1995:1942-1948.

二级参考文献2

共引文献307

同被引文献56

  • 1陈年生,李腊元,董武世.基于混合遗传算法的QoS多播路由算法[J].计算机应用,2005,25(7):1485-1487. 被引量:8
  • 2马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 3石钊,葛连升.一种解多QoS约束组播问题的改进蚁群算法[J].山东大学学报(理学版),2007,42(9):41-45. 被引量:7
  • 4I. Lee, W. Show, X.-M. Fan. Wireless multimedia sensor networks[C]. Computer communication and networks 2009, Australia, 2009 : 561-582.
  • 5J. Li, H. Y. Cui, R. Gao, J. Du, et al. The application of an improved particle swarm optimization for multi-constrained QoS routing[C]. Database technology and applications (DBTA), 2010 2nd international workshop, Wuhan, China, 2010.11 : 1-5.
  • 6C. B. Li, C. X. Cao, Y G. Li, Y. B. Yu. Hybrid of genetic algorithm and particle swarm optimization for multicast QoS routing[C]. 2007 IEEE international conferenceon control and automation, Guangzhou, China, May 30 to June 1, 2007:2355-2359.
  • 7X. Jin, L. Bai, Y.-F. Ji, Y.-M. Sun. Probability convergence based particle swarm optimization for multiple constrained QoS multicast routing[C]. Fourth international conference on semantics, Knowledge and grid. Beijing, China, 2008,12:412-415.
  • 8C. B. Li, C. X. Cao, Y. G. Li, Y. B. Yu. Hybrid of genetic algorithm and particle swarm optimization for multicast QoS routing[C]. 2007 IEEE international conferenceon control and automation, Guangzhou, China, May 30 to June 1,2007:2355-2359.
  • 9Y. Shi, R. Eberhart. A modified particle swarm optimizer[C]. Proceeding of IEEE international conference on evolutionary computation, 1998:69-73.
  • 10R. Ebergart, Y. Shi. Particle swarm optimiaztion optimization: developments, application and resource[C]. IEEE conference on evolutionary computation, Seoul, 2001:1945-1950.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部