期刊文献+

基于非圆信号波达方向估计的最大似然算法 被引量:4

Maximum Likelihood Algorithm for Direction-of-arrival Estimation of Noncircular Signals
下载PDF
导出
摘要 现有的非圆信号波达方向(DOA)估计算法基本都是子空间分解类的,如NC-MUSIC、NC-ESPRIT算法等。基于子空间拟合类的非圆信号DOA估计算法研究的不多。文中依据非圆信号的DOA估计数学模型,提出了基于非圆信号的DOA估计最大似然算法。通过计算机仿真,将基于非圆信号的最大似然算法与常规最大似然算法及基于非圆信号的MUSIC算法进行了性能比较。结果表明,该算法提高了方位估计的估计性能,对于估计精度要求很高、用户比较密集的场合,能发挥很大的作用。 Most of the existing algorithms for DOA estimation of noncircular signals belong to the subspace eigenvalue decomposition algorithm, such as NC-MUSIC algorithm and NC-ESPRIT algorithm. Algorithms for DOA estimation of noncircular signals based on subspace fitting havent been researched very much. According to the data mode for DOA estimation based on noncircular signals, a maximum likelihood algorithm for DOA estimation of noncircular signals is proposed in the paper. The comparison between the NC-ML algorithm and the conventional ML algorithm is presented based on the computer emulation. And the same comparison is presented between the NC-ML algorithm and the NC-MUSIC algorithm. The efficacy shows that the NC-ML algorithm improves the estimation capacity. This algorithm can play an important role in the situation which is having lots of users and requiring high estimation precision.
出处 《现代雷达》 CSCD 北大核心 2011年第1期51-54,共4页 Modern Radar
基金 国家自然科学基金资助项目(60802053)
关键词 波达方向估计 非圆信号 最大似然算法 direction-of-arrival estimation noncircular signals maximum likelihood algorithm
  • 相关文献

参考文献4

  • 1Charge P, Wang Y, Saillard J. A root MUSIC algorithm for non-circular-sources[ C ]// Speech and Signal Processing. [ S. l. ] :IEEE Press, 2001.
  • 2Haardt M, R o mer F. Enhancements of unitary ESPRIT for non-circular sources [ C ]// IEEE International Conference on Acoustics, Speech and Signal Processing. Montral, QC: IEEE Press, 2004.
  • 3Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986,34(5) : 1081 - 1089.
  • 4王布宏,王永良,陈辉.相干信源波达方向估计的广义最大似然算法[J].电子与信息学报,2004,26(2):225-232. 被引量:11

二级参考文献10

  • 1[1]Schmidt R O. Multiple emitter location and signal parameter estimations [J]. IEEE Trans. on AP, 1986, AP-34(3): 276-280.
  • 2[2]Kumaresan R, Tufts D W. Estimating the angle of arrival of multiple plane waves [J]. IEEE Trans. on AES, 1983, AES-19(1): 134-139.
  • 3[3]Roy R, Kailat T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Trans. on ASSP, 1989, ASSP-37(7): 984-995.
  • 4[4]Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals [J]. IEEE Trans. on ASSP, 1985, ASSP-33(4): 806-811.
  • 5[5]Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise [J]. IEEE Trans. on ASSP, 1986, ASSP-34(5): 1081-1089.
  • 6[6]Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting [J]. IEEE 7rans. on SP, 1991, SP-39(11): 2436-2449.
  • 7[7]Shan T J, Paulray A, Kailath T. On smoothed rank profile tests in eigenstructure methods for directions-of-arrival estimation [J]. IEEE Trans. on. ASSP, 1987, ASSP-35(10): 1377-1385.
  • 8[8]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound [J]. IEEE Trars. on ASSP, 1989, ASSP-37(5): 720-741.
  • 9[9]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons [J]. IEEE Trans. on ASSP, 1990, ASSP-38(12): 2140-2150.
  • 10[10]Michalewicz Z. Genetic Algorithm+Data Structures=Evolution Program [M]. Berlin, Heidelberg:Springer-Verlag, 1994, Chapter 5.

共引文献10

同被引文献33

  • 1WANGBuhong,WANGYongliang,CHENHui,GUOYing.Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J].Science in China(Series F),2004,47(6):777-792. 被引量:17
  • 2Kim J M, Lee O K, Ye J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on In- formation Theory, 2012,58(1) :278-301.
  • 3Zhang Xiaofei, Gao Xin, Chen Weiyang. Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property[J]. Journal of Electromagnetic Waves and Applications, 2009, 23 (5/6) : 593-606.
  • 4Zhang Xiaofei, Li Jianfeng, Xu Lingyun. Novel two- dimensional DOA estimation with L-shaped array [J]. EURASIP Journal on Advances in Signal Pro- cessing, 2011,2011(1) :1-7.
  • 5Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation[J]. Signal Pro- cessing, 1995,42(2):121-138.
  • 6Picinbono B. On cireularity[J]. IEEE Transactions on Signal Processing, 1994(42) : 3473-3482.
  • 7Lacoume J L. Complex random variables and signals [J]. Traitement du Signal, 1998(15):535-544.
  • 8Delmas J P, Abeida H. Cramer-rao bounds of DOA estimates for BPSK and QPSK modulated signals[J]. IEEE Transactions on Signal Processing, 2006, 54 (1):117-126.
  • 9Zoubir A, Charg% P, Wang Y. Non circular sources localization with ESPRIT[C]//Proc European Con- ference on Wireless Technology (ECWT 2003). Mu- nich, Germany: [s. n.], 2003:1-4.
  • 10Haardt M, Romer F. Enhancements of unitary ES- PRIT for noneircular sources EC]//Proceedings of 29th IEEE International Conference on Acoustics,SpeEch, and Signal Processing. Montreal, Quebec, Canada.. [s. n. ], 2004: Ⅱ-101-Ⅱ-104.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部