期刊文献+

大扁锭凝固过程模拟及缩孔优化 被引量:11

Solidification simulation and shrinkage optimization of big flat ingots
原文传递
导出
摘要 对某钢厂28.7t钢锭凝固过程进行测温,并用有限元方法模拟该钢锭凝固过程温度场和凝固场分布.结果表明:温度模拟值与现场测量值吻合很好,证明模拟具有较高的准确性和可靠性;凝固初期,钢锭底部和保温冒与钢锭模连接处凝固较快;52min时,绝热板与钢锭间已形成一定气隙;前3h,钢锭侧面凝固顺序由模壁向钢锭中心平行推进;凝固后期较凝固前期凝固速度快;热电偶测得,保温冒中心凝固时间为428min,钢锭本体中心顶部凝固时间为365min,冒部全凝时间大于本体全凝时间的15%,有利于控制一次缩孔只存在于冒部.通过模拟将浇注温度由1543℃降低到1533℃,不但不影响保温帽钢液对本体的补缩作用,还可以使缩孔减小6mm,有利于提高钢锭质量. The temperature of a steel ingot of 28.7 t was measured during solidification and the temperature field and solidification process of the steel ingot were simulated by a finite element method. It is shown that the simulated values of the temperature field agree well with the measured data, indicating that this simulation is accurate and reliable. At the initial stage of solidification, the bottom of the steel ingot and the connection zone between the ingot mold and the insulating riser solidify faster. At 52 min, an air gap forms between the steel ingot and the adiabatic plate. At the first 3 h, the steel ingot solidifies parallelly from the mold wall to the center. The later stage of solidification is faster than the early stage. The solidification time is 428 rain in the center of the insulating riser and the final solidification time is 365 min in the center of the ingot body. The former is 15% longer than the later, which is benefit to control shrinkage cavities in the insulating riser only. Based on the simulation, the pouring temperature reduces from 1 543 ℃ to 1 533 ℃ , which does not affect steel feeding but also can reduce 6 mm of the depth of shrinkage. This method can improve the quality of steel ingots.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2011年第1期11-16,共6页 Journal of University of Science and Technology Beijing
关键词 钢锭 凝固过程 温度分布 缩孔 模拟 有限元法 ingots solidification temperature distribution shrinkage simulation finite element method
  • 相关文献

参考文献13

  • 1诺索夫 Г Л.各种牌号钢锭在钢锭模内的凝固和冷却[J].国外钢铁,1965,(4):36-36.
  • 2斯特罗加诺夫 А И.保温帽中的热流[J].国外钢铁,1965,(4):53-53.
  • 3刘庄,赵勇,张沅,赵鹤林,杨燕棠.大钢锭凝固过程的温度场计算及缩孔疏松预测[J].钢铁研究学报,1993,5(1):23-32. 被引量:39
  • 4Eekert E R G,Drake R M.传热与传值分析.航青译.北京:科学出版社,1983.
  • 5Bennon W D, Incropera F P. The evolution of macrosegregation in statically cast binary ingots. MetaU Trans B, 1987, 18(3) : 611.
  • 6Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems: Ⅰ . Model formulation, lnt J Heat Mass Transfer, 1987, 30:2161.
  • 7王意,郑贤淑,金俊泽.铸件凝固数值模拟计算效率的研究[J].铸造,1992,41(6):16-19. 被引量:4
  • 8吴红,张毅,王君卿.铸件凝固过程的三维数值模拟综合模型[J].铸造,1990,39(10):6-12. 被引量:7
  • 9Lukas H L, Weiss J, Henig E T. Strategies for the calculation of phase diagrams. Calphad,1982, 6(3) : 229.
  • 10Kattner U R. The thermodynamic modeling of muhicomponent phase equilibria. JOM, 1997, 49(12) : 14.

二级参考文献10

  • 1孟宪云,张峻巍,陈彦博,温景林.半固态复合熔铸过程中SiC与2A11合金的润湿性[J].中国有色金属学报,2001,11(z2):77-80. 被引量:9
  • 2张沅,1988年
  • 3赵勇,1987年
  • 4Speci M,大型铸锻件,1984年,增1期,22页
  • 5匿名著者,1983年
  • 6团体著者,正交设计法,1976年
  • 7王君卿,S.F.Hansen,P.N.Hansen.铸型充填过程模型化及流动场数值模拟[J]铸造,1987(12).
  • 8张毅.铸件凝固数值模拟及铸造工艺CAD现代进展[J]铸造,1987(06).
  • 9郭可讱,金俊泽,高钦,黄琪瑞,徐安顺,王卫东.大型铸件凝固进程的数字模拟[J]大连工学院学报,1980(02).
  • 10张毅,王君卿.铸件凝固过程热场电子计算机模拟[J].铸造,1980,36(1):14-22. 被引量:3

共引文献46

同被引文献93

引证文献11

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部