摘要
分析了一个非线性三参数电力系统振荡的异宿分枝,给出Melnikov函数的留数计算法,并获得电力系统发生混沌振荡的锥性参数区域和带形参数区域。
For a nonlinear power transmission system, the residue calculus method is introduced and applied to study its heteroclinic bifurcation. There a cone region and a strip region of parameters are obtained in which the power transmission system displays chaotic ocillation. This gives a theoretic analysis and a computational method for the purpose to control the nonlinear system with deviation stably running.
出处
《应用数学和力学》
CSCD
北大核心
1999年第10期1094-1100,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金!资助项目 ( 195 710 81)
四川省青年科技基金!资助项目( 94_0 0 2 )
关键词
电力系统
非线性
异宿分枝
混沌振荡
power transmission system
nonlinear
heteroclinic bifurcation
chaotic oscillation