期刊文献+

通过求解输运方程计算壁面距离 被引量:7

Computations of Wall Distances by Solving a Transport Equation
下载PDF
导出
摘要 壁面距离在当代湍流模化中仍然扮演着关键角色,然而苦于遍历计算壁面距离的高昂代价,该文考虑了求解偏微分方程的途径.基于Eikonal方程构造出类Euler形式的输运方程,这样,可以直接利用求解Euler和Navier-Stokes方程的CFD程序使用的高效数值格式和部分代码.基于北航的MI-CFD(CFD for missles)数值平台,详尽地介绍了该输运方程在直角坐标下的求解过程.使用隐式LUSGS时间推进和迎风空间离散,发现该方程具有鲁棒快速的收敛特性.为了保证精度,网格度量系数必须也迎风插值计算.讨论了初始条件和边界条件的特殊处理.成功应用该壁面距离求解方法计算了几个含1-1对应网格和重叠网格的复杂外形. Motivated by the large expense to compute wall distances which still play a key role in modern turbulence modeling,the approach of solving partial differential equations is considered.An Euler-like transport equation was proposed based on Eikonal equation so that efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes can be reused.A detailed implementation of the transport equation in Cartesian Coordinates was provided based on code MI-CFD of BUAA.The transport equation was found to have robust and rapid convergence using implicit LUSGS time advancement and upwind spatial discretization.Geometric derivatives must also be upwind determined for accuracy assurance.Special treatments on initial and boundary conditions were discussed.This distance solving approach is successfully applied on several complex geometries with 1-1 blocking or -overset grids.
出处 《应用数学和力学》 CSCD 北大核心 2011年第2期135-143,共9页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划资助项目(2009CB724104) 中国博士后科学基金资助项目(20090450285)
关键词 壁面距离 数值模拟 重叠网格 wall distance numerical simulation overset grid
  • 相关文献

参考文献11

  • 1Menter F R. Improved two-equation k-w turbulence models for aerodynamic flows [ R ]. NASA-TM-103975, NASA, 1992.
  • 2Spalart P R, Allmaras S. A one-equation turbulence model for aerodynamic flows[ R]. AIAA- 92-0439, AIAA, 1992.
  • 3Wigton L B. Optimizing CFD codes and algorithms for use on Cray computer[C]//Caughey D A, Hafez M M. Frontiers of Computational Fluid Dynamics. Singapore: World Scientific Publishing, 1998: 1-15.
  • 4Spalding D B. Calculation of turbulent heat transfer in cluttered spaces [ C ]//Unpublished paper presented at the l Oth International Heat Transfer Conference. Brighton, UK, 1994.
  • 5Sethian J A. Fast marching methods[J].SIAM Review , 1999, 41(2) : 199-235.
  • 6Tucker P G, Rumsey C L, Spalart P R, Bartels R E, Biedron R T. Computations of wall distances based on differential equations[R]. AIAA-2004-2232, AIAA, 2004.
  • 7Tucker P G. Assessment of geometric multilevel convergence and a wall distance method for flows with multiple internal boundaries[ J]. Applied Mathematical Modelling, 1998, 22: 293- 311.
  • 8Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models [ R ]. AIAA-2005-1095, AIAA, 2005.
  • 9Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier- Stokes equations[J]. AIAA Journal, 1988, 26(9) : 1025-1025.
  • 10Benek J A, Steger J L, Dougherty F C. A flexible grid embedding technique with applications to the Euler equations[R]. AIAA-83-1944, AIAA, 1983.

二级参考文献13

  • 1Pearce D G, Stanley S A, Martin F W, Jr. Development of a large scale chimera grid system for the space shuttle launch vehicle[R]. AIAA-1993- 533, 1993.
  • 2Rogers S E, Cao H V, Su T Y. Grid generation for complex high-lift configurations[R]. AIAA-1998-3011, 1998.
  • 3Murman S M, Rizk Y M, Schiff L B. Coupled numerical simulation of the external and engine inlet flows for the F- 18 atlarge incidence[J]. Aircraft Design, 2000, 3(2): 65- 77.
  • 4Benek J A, Buning P G, Steger J L. A 3-D chimera grid embedding technique[R]. A1AA-1985 1523, 1985.
  • 5Meaking R L. A new method for establishing intergrid communication among systems of overset grids [R]. AIAA-1991 -1586, 1991.
  • 6Nakahashi K, Togashi F, Sharov D. Intergrid-boundary definition method for overset unstructured grid approach [J]. AIAA Journal, 2000, 38(11): 2077-2084.
  • 7Wey T C. Development of a mesh interface generator for overlapped structured grids[R]. AIAA 1994- 1924, 1994.
  • 8Cho K W, Kwon J H. Development of a fully systemized chimera methodology for steady/unsteady prohlems[J]. Journal of Aircraft, 1999, 36(6): 973- 980.
  • 9Noack R W. Resolution appropriate overset grid assembly for structured and unstructured grids [R]. AIAA 2003 4123, 2003.
  • 10Rogers S E, Suhs N E, Suhs W E. Pegasus 5: an automa ted preprocessor for overset grid computational fluid dynamics[J]. AIAA Journal, 2003, 41 (6) : 1037-1045.

共引文献13

同被引文献38

  • 1陈丽萍,陈燕,胡德金.一种快速完备的自由曲线和曲面间最短距离求取算法[J].上海交通大学学报,2003,37(z1):41-44. 被引量:7
  • 2李广宁,李凤蔚,周志宏.一种高效的壁面距离计算方法[J].航空工程进展,2010,1(2):137-142. 被引量:5
  • 3Rudd C. Preform processing for high volume resin transfer moulding(RTM)[D]. PhD Thesis. Nottingham: University of Nottingham, 1989.
  • 4Kendall K N. Mould design for high volume resin transfer moulding[D]. PhD Thesis. Nottingham: University of Nottingham, 1991.
  • 5Abbassi A, Shahnazari M R. Numerical modeling of mold filling and curing in non-isothermal RTM process[J]. Applied Thermal Engineering,2004,24(16): 2453-2465.
  • 6Mal O, Couniot A, Dupret F. Non-isothermal simulation of the resin transfer moulding process[J]. Composites: Part A,1998,29(1/2): 189-198.
  • 7Shojaei A, Ghaffarian S R, Karimian S M H. Three-dimensional process cycle simulation of composite parts manufactured by resin transfer molding[J]. Composite Structures,2004,65(3/4): 381-390.
  • 8Shojaei A, Ghaffarian S R, Karimian S M H. Simulation of the three-dimensional non-isothermal mold filling process in resin transfer molding[J]. Composites Science and Technology,2003,63(13): 1931-1948.
  • 9Cheung A, Yu Y, Pochiraju K. Three-dimensional finite element simulation of curing of polymer composites[J]. Finite Elements in Analysis and Design,2004,40(8): 895-912.
  • 10Antonelli D, Farina A. Resin transfer moulding: mathematical modelling and numerical simulations[J]. Composites: Part A,1999,30(12): 1367-1385.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部