期刊文献+

基于FPGA的F2^m域椭圆曲线点乘的快速实现 被引量:1

Fast implementation of point multiplication over elliptic curve F_2~m based on FPGA
下载PDF
导出
摘要 椭圆曲线点乘的实现速度决定了椭圆曲线密码算法(ECC)的实现速度。采用蒙哥马利点乘算法,其中模乘运算、模平方运算采用全并行算法,模逆运算采用费马.小定理并在实现中进行了优化,完成了椭圆曲线点乘的快速运算。采用Xilinx公司的Virtex-5器件族的XCV220T作为目标器件,完成了综合与实现。通过时序后仿真,其时钟频率可以达到40 MHz,实现一次点乘运算仅需要14.9μs。 The implementation speed of Elliptic Curve Cryptography(ECC) depends on the implementation speed of elliptic curve point multiplication.Point multiplication of elliptic curve using Montgomery algorithm was proposed in this paper.Parallel algorithm was used in modular multiplication algorithm and modular square algorithm,as well as Fermat's Little Theorem was used and optimized in modular inversion,thus the fast operation of elliptic curve point multiplication was implemented.Synthesis and implementation were realized in a Xilinx device of XC5VLX220T.Through timing simulation,the clock frequency can achieve 40MHz.It takes only 14.9μs to carry out one point multiplication operation.
作者 魏东梅 杨涛
出处 《计算机应用》 CSCD 北大核心 2011年第2期540-542,共3页 journal of Computer Applications
关键词 椭圆曲线密码算法 模乘 点乘 Elliptic Curve Cryptography(ECC) modular multiplication point multiplication
  • 相关文献

参考文献8

  • 1刘连浩,申勇.椭圆曲线密码体制中标量乘法的快速算法[J].计算机应用研究,2009,26(3):1104-1108. 被引量:12
  • 2SAQIB N A, RODRIGUEZ-HENRIQUEZ F, DIAZ-PEREZ A. A parallel architecture for fast computation of elliptic curve scalar multiplication over GF(2^m) [C] //Proceedings of the 18th International Parallel and Distributed Processing Symposium. Washington, DC: IEEE Computer Society, 2004: 144.
  • 3杨先文,杨洋,李峥.GF(2^m)域上ECC通用加速器设计与实现[J].计算机工程与设计,2008,29(12):3026-3029. 被引量:2
  • 4陈婧,蒋俊洁,王石,邓小铁,汪东升.基于FPGA的高速椭圆曲线标量乘法结构[J].计算机研究与发展,2008,45(11):1947-1954. 被引量:6
  • 5邹候文,王峰,唐屹.椭圆曲线点乘IP核的设计与实现[J].计算机应用,2006,26(9):2131-2133. 被引量:5
  • 6ANSARI B, HASAN M A. High-performance architecture of elliptic curve scalar multiplication[J]. IEEE Transactions on Computers, 2008, 57(11): 1443-1453.
  • 7TAKAGI N, YOSHIKI J, TAGAKI K. A fast algorithm for multiplicative inversion in GF(2^m) using normal basis[J]. IEEE Transactions on Computers, 2001, 50(5): 394- 398.
  • 8WU HUAPENG. Low compleixty bit-paralel finite field arithmetic u- sing ploynominal basis[ C]// Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems. New York: ACM, 1999:280-291.

二级参考文献31

共引文献21

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部