期刊文献+

Tricept并联机构的奇异性分析 被引量:4

Singularity Analysis of Tricept Parallel Mechanism
下载PDF
导出
摘要 奇异性是并联机构的固有属性,对机构的工作性能会产生不良影响,针对确定的并联机构应找出它的奇异位形.本文对驱动器分别布位于主动支链移动副和胡克铰2个转动副的3种驱动形式的Tricept并联机构的奇异性进行了分析.首先基于螺旋理论推导了机构各支链的运动螺旋系,利用互易积获得约束子矩阵和运动子矩阵,以此为基础建立了机构的完整雅克比矩阵.根据完整雅克比矩阵及线几何理论分析了Tricept并联机构的位形奇异条件,给出了3种驱动形式下Tricept并联机构的奇异位形,并分析了机构在奇异位形处的运动特征. Since singularity is the inherent characteristic of parallel mechanism and has bad effects on manipulator's working performance, for a certain mechanism, its singular configures should be found out. The paper chooses the Tricept parallel mechanism, analyzing the singularity in three different actuator dispositions, including a prismatic pair and two revolute pairs of the universal joint, of the Tricept. First, the systems of twists and reciprocal screws of the limbs of the Tricept are deduced based on the scerws theory. Second, the constraint sub-matrix and actuation sub-matrix are obtained through the orthogonal product, and the complete Jacobian matrix of the Tricept is obtained. Finally, the singular conditions of the parallel mechanism are analyzed by investigating the rank of the Jacobian matrices and the theory of Grassmann line geometry, and the singular configures of three actuator dispositions of the Tricept and their kinematic characteriscs are obtained.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第1期19-26,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(60275031) 北京市重点实验室开放基金资助项目(JH001011200801)
关键词 TRICEPT并联机构 完整雅克比矩阵 线几何方法 奇异位形 Tricept parallel mechanism comptete Jacobian matrix line geometry method sigular configure
  • 相关文献

参考文献9

  • 1GOSSELIN C, ANGELES J. Singularity analysis of closed-loop kinematics chains [ J]. IEEE Trans Robotics and Automation, 1990, 6(3) : 281-290.
  • 2LIU Xin-jun, JONGWON K, KUNKU O. Singularity analysis of the HALF parallel manipulator with revolute actuators[ C]// IEEE Interational Conference on Robotics and Automation, Taibei, September 14-19, 2003: 767-772.
  • 3BONEV A, DIMITER Z, GOSSELIN C. Singularity analysis of 3-DOF planar parallel mechanisms via screw theory [ J ]. ASME J Mech Des, 2003, 125(3) : 573-581.
  • 4ALON W, ERIK O, MOSHE S, et al. Application of line geometry and linear complex approximation to singularity analysis of the 3-DOF CaPaMan parallel manipulator[ J]. Mechanism and Machine Theory, 2004, 39 (1) : 75-95.
  • 5TSAI L, JOSHI S. Jacobian analysis of limited-DOF parallel manipulators[ J]. ASME J Mech Des, 2002, 124(2) : 254-258.
  • 6李永刚,宋轶民,冯志友,张策.4自由度非全对称并联机构的完整雅可比矩阵[J].机械工程学报,2007,43(6):37-40. 被引量:17
  • 7SICILIANO B. The triceptroot: inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm [ J ]. Robotica, 1999, 17(2) : 437-445.
  • 8李仕华,黄真.螺旋系在不同空间下的相关性[J].机械工程学报,2005,41(10):44-50. 被引量:10
  • 9MERLE J. Singular configurations of parallel manipulators and grassmann geometry[ J ]. Int J of Rob Res, 1989, 8 (5) : 45- 56.

二级参考文献13

  • 1Ball R S. The Theory of Screws. England: Cambridge University Press, 1900
  • 2Hunt K H. Kinematic Geometry of Mechanisms. Oxford:Claredon Press, 1978
  • 3Phillips J R. Freedom in Machinery. England: Cambridge University Press, 1990
  • 4MOHAMED M G,DUFFY J.A direct determination of the Instantaneous kinematics of fully parallel robot manipulators[J].ASME Journal of Mechanisms,Transmissions and Automation in Design,1985,107(2):226-229.
  • 5GOSSELlN C M,ANGELES J.Singularity analysis of closed-loop kinematic chains[J].IEEE Transactions on Robotics and Automation,1991,6(3):281-290.
  • 6YANG Guilin,CHEN Iming,WEI Lin,et al.Singularity analysis of three-legged parallel robots based on passive-joint velocities[J].IEEE Transactions on Robotics and Automation,2001,17(4):413-422.
  • 7GOSSELIN C M,ANGELES J.A global performance index for the kinematic optimization of robotic manipulators[J].ASME Journal of Mechanical Design,1991,113(3):220-226.
  • 8GOSSELIN C M.Stiffness mapping for parallel manipulators[J].IEEE Transaction on Robotics and Automation,1990,6(3):377-382.
  • 9MERLET J E Jacobian,manipulability,condition number,and accuracy of parallel robots[J].ASME Journal of Mechanical Design,2006,128(1):199-206.
  • 10ZLATANOV D,BONEV I A,GOSSELIN C M.Constraint singularities of parallel mechanisms[C]//Proceedings of IEEE International Conference on Robotics and Automation,May,2002,Washington D.C.2002:496-502.

共引文献25

同被引文献28

  • 1刘伊威,金明河,樊绍巍,兰天,陈兆芃.五指仿人机器人灵巧手DLR/HIT Hand Ⅱ[J].机械工程学报,2009,45(11):10-17. 被引量:32
  • 2张晓洪,张均富,夏重.3-RTT并联机构的奇异轨迹分析[J].工程设计学报,2007,14(4):299-303. 被引量:4
  • 3Innocenti C, Parenti Castelli V. Singularity- free evolu- tion from one configuration to another in serial and fully - parallel manipulators[J]. ASME Journal of Me- chanical Design, 1998,120 (1) : 73 -- 79.
  • 4Huang Z,Chen L H,Li Y W. The singularity principle and property of stewart parallel manipulator[J]. Jour- nal of Robotic Systems, 2003,20(4) :163 -- 176.
  • 5Huang Z,Zhao Y S,Wang J, Yu J J. Kinematic princi- ple and geometrical condition of general - Linear - Complex Special Configuration of Parallel Manipulators [J]. Mechanism and Machine Theory, 1999, (34) : 1171 --1186.
  • 6Gosselin C, Angeles J. Singularity analysis of closed - loop kinematics chains[J]. IEEE Trans Robotics and Automation, 1990,6 (3) : 281-- 290.
  • 7Bonev A,Dimiter Z, Gosselin C. Singularity analysis of 3 - DOF planar parallel mechanisms via screw theory [J]. ASME J Mech Des,2003,125(3) :573--581.
  • 8Aion W,Erik O,Moshe S,et al. Application of line ge- ometry and linear complex approximation to singularity analysis of the 3 - DOF CaPaMan parallel manipulator [J]. Mechanism and Machine Theory, 2004,39 ( 1 ) : 75 --95.
  • 9Liu C H, Hsu F K. Direct singular positions of the par- allel manipulator Tricept[J]. Journal of Mechanical En- gineering Science,2007,221 (1) : 109-- 117.
  • 10Siciliano B. The tricept robot ; Inverse kinematics, ma- nipulability analysis and closed - loop direct kinemat- ics algorithm[J]. Robotiea, 1995,13 (2) : 133 -- 140.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部