期刊文献+

MIMO系统LLL格基约减检测技术研究 被引量:3

Research on LLL Lattice reduction algorithm for MIMO Detection
下载PDF
导出
摘要 针对LLL格基约减算法应用在MIMO系统检测中计算复杂度高,理论和实验分析了LLL算法中影响列交换条件的参数δ对计算复杂度和正交缺陷的影响,同时结合ZF和VBLAST检测技术实验分析了参数δ在MIMO信号检测系统中对误码率性能的影响。数值结果与分析表明:在MIMO检测系统中LLL算法参数δ=0.75为最佳值。 In order to solve the problem of high computation complexity of LLL algorithm in MIMO detection,the LLL algorithm's parameter δ which influences the column exchange process is analyzed theoretically and experimentally.In addition,the influence of δ on the computation complexity,orthogonal defect and BER(Bit-Error Rate) performance in MIMO detection are also analyzed.Numerical results show that the LLL algorithm parameter δ=0.75 is the best value in MIMO detection system.
出处 《大连民族学院学报》 CAS 2011年第1期19-23,共5页 Journal of Dalian Nationalities University
关键词 MIMO检测 格基约减 迫零检测 VBLAST LLL算法 MIMO detection lattice reduction zero forcing VBLAST LLL algorithm
  • 相关文献

参考文献11

  • 1JANKIRAMAN M. Space - time codes and mimo systems [ M ]. Artech House, 2004.
  • 2WINDPASSINGER C, FISCHER R F H, HUBER J B. Lattice - reduction - aided broadcast precoding [ J ]. IEEE Trans, Comm, 2004,52:2057-2060.
  • 3LENSTRA, LENSTR, LOVASZ. Factoring Polynomials with Rational Coefficients[J]. Math. , Ann, 1982, 261 : 515 -534.
  • 4张庆荣,王刚,孙宇昊,李道本.LR算法在MIMO-LAS-CDMA系统中的应用[J].吉林大学学报(信息科学版),2006,24(1):12-17. 被引量:3
  • 5NIU Jun, LU I Tai. A comparison of two lattice - reduction - based receivers for mimo systems[ C ]. Sarnoff Symposium 2008 IEEE,2008.
  • 6GAN Yinghung, LING Cong. Member, IEEE, and MOW Wai - Ho, Senior Member[ C ]//IEEE. Complex Lattice Reduction Algorithm for Low - Complexity Full Diversity MIMO Detection. IEEE Transactions on signal processing,2009,57 ( 7 ) :2701 - 2710.
  • 7WINDPASSINGER C. Detection and precoding for multiple input multiple output channels [ D ]. Erlangen - Nuernberg : Friedrich - Alexander - University ,2004.
  • 8HASSIBI B,VIKALO H. On the Sphere - Decoding Algorithm I [ J ]. IEEE Transactions on signal processing, 2005,53(8) :2819 -2834.
  • 9DAMEN M O, EIGAMALH, CAIRE G. On Maximum - Likelihood Detection and the Search for the closest Lattice Point [ J ]. IEEE Transactions on information theory, 2003, 49(10) :2389 -2402.
  • 10GOLUB G H, CIOFFI J M. Matrix Computations [ C ]. 3rd edition. The Johns Hopkins University Press, Baltimore, MD, USA, 1996.

二级参考文献8

  • 1LI Dao-ben. The Perspectives of LAS-CDMA (Large Area Synchronous CDMA) Technology for the 4th Generation of Wireless Mobile Radio [J]. IEEE Communications Magazine, 2003, 23 (2) : 128-134.
  • 2YAO H, WORNELL G. Lattice-Reduction-Aided Detectors for MIMO Communication Systems [ CL/OL]. IEEE Proc Global Communications Conference (GLOBECOM), Taipei, Taiwan, 2002 [2004-12-25]. http: //allegro. mit. edu//bin/pubs - search, php? SearchFor = conference.
  • 3DIRK WUBBEN, RONALD BOHNKE. MMSE-Based Lattice-Reduction for Near-ML Detection of MIMO Systems[CL/OL].ITG Workshop on Smart Antennas, Munich, Germany, 2004 [2004-12-25]. http: //www. comm. uni - bremen, de/whomes/wuebben/.
  • 4YAO H. Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems[D]. [ S. l. ] : Massachusetts Institute of Technology, 2003.
  • 5WINDPASSINGER C, FISCHER R F H. Low-Complexity Near-Maximum-Likelihood Detection and Precoding for MIMO Systems using Lattice Reduction [C] //Proc IEEE Information Theory Workshop (ITW), Paris, France: [s. n. ], 2003.
  • 6WINDPASSINGER C, H FISCHER R F. Optimum and Sub-Optimum Lattice-Reduction-Aided Detection and Precoding for MIMO Communications[C] //Proc Canadian Workshop on Information Theory, Waterloo, Ontario, Canada: [ s. n. ],2003 : 88-91.
  • 7LENSTRA A K, LENSTR H W, LOVASZ L. Factoring Polynomials with Rational Coefficients[J]. Math Ann, 1982(261) : 515-534.
  • 8GOLDEN G D, FOSCHINI G J. Detection Algorithm and Initial laboratory Results Using V-blast Space-Time Communication Architecture[J]. Electron Lett, 1999, 35 (1) : 1416-1418.

共引文献2

同被引文献18

  • 1孙宇,何大可.格基约减算法及其应用[J].信息安全与通信保密,2005,27(3):154-156. 被引量:1
  • 2张庆荣,王刚,孙宇昊,李道本.LR算法在MIMO-LAS-CDMA系统中的应用[J].吉林大学学报(信息科学版),2006,24(1):12-17. 被引量:3
  • 3GAN Y H,LING C.Complex lattice reduction algorithm for low-complexity full diversity MIMO deteetion[C].IEEE Transactions on signal processing, 2009,57(7) : 2701-2710.
  • 4WESEL R D,CIOFFI J M.Precoding and the MMSE-DFE Signals[J].Systems and Computers, 2013(2) : 1144-1148.
  • 5MA G D,WU M Q,XU C X,et al.Lattice-reduction- aided Tomlinson-Harashima precoding based on MMSE criteria in multi-user MIMO downlink system[J].Communi- cation Technology and Application, 2011 , 12 : 98-102.
  • 6WINDPASSINGER C, FISCHER R, HUBER J B.Lattice-reduction-aided broadcast precoding[J].Communications[J]. IEEE Transactions, 2004,52(12) : 2057-2060.
  • 7DAMEN M O, CAIRE G.On Maximum likelihood detection and the Search for the closest Lattice Point[J].IEEE Trans- actions on information theory, 2003,49(10) : 2389-2402.
  • 8ARBERO Lg,RATNARAJAH T, COWAN C.A comparison of complex lattice reduction algorithms for MIMO detection[J] IEEE International conferences on Acoustics, 2008,4(1): 2705-2708.
  • 9ZHANG W, QIAO S Z,WEI Y M.HKZ and Minkowski reduction algorithms for lattice-reduction-aided MIMO detection[J].Signal Processing, IEEE, 2012,60( 11 ) : 5963- 5976.
  • 10汪蓓,朱琦.MIMO-OFDM系统中一种改进的V-BLAST检测算法[J].信号处理,2009,25(9):1409-1413. 被引量:8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部