期刊文献+

联合Duffing方程和Van der Pol方程的非线性分数阶微分方程(英文) 被引量:2

NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION COMBINING DUFFING EQUATION AND VAN DER POL EQUATION
下载PDF
导出
摘要 本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解. In this article, applications of Adomian decomposition method for the solution of nonlinear fractional differential equation are studied. By using the Riemann-Liouville fractional derivative and the Adomian decomposition method, we combine Duffing equation and Van der Pol equation together in one fractional equation and obtain its analytical approximate solution.
出处 《数学杂志》 CSCD 北大核心 2011年第1期7-10,共4页 Journal of Mathematics
基金 Supported by the PhD Programs Foundation of Ministry of Education of China(20070128001) the Innovation Program of Shanghai Municipal Education Commission (09YZ239) the Research Foundation of Shanghai Institute of Technology (YJ2009-12)
关键词 分数阶微积分 DUFFING方程 Van der POL方程 ADOMIAN分解方法 fractional calculus Duffing equation Van der Pol equation Adomian decomposition method
  • 相关文献

参考文献7

  • 1Podlubny I. Fractional differential equations[M]. San Diego: Academic, 1999.
  • 2Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: Wiley, 1993.
  • 3Shimizu N, Zhang Wei. Fractional calculus approach to dynamic problems of viscoelastic mate- rials[J]. JSME Series C-Mechanical Systems, Machine Elements and Manufacturing, 1999, 42(4): 825-837.
  • 4Duan Junsheng. Time- and space-fractional partial differential equations[J]. J. Math. Phys., 2005, 46(1): 13504-13511.
  • 5Saha R S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Appl. Math. Comput., 2005, 168(1): 398-410.
  • 6Adomian G. Decomposition solution for Duffing and Van der Pol oscillators[J]. Internat. J. Math. & Math. Sci., 1986, 9(4): 731- 732.
  • 7Adomian G. A review of the decomposition method and some recent results for nonlinear equtions[J]. Comput. Math. Appl., 1991, 21(5): 101-127.

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部