期刊文献+

自然邻接点局部Petrov-Galerkin法求解中厚板弯曲问题 被引量:7

Natural Neighbor Petrov-Galerkin Method for Moderately Thick Plates
下载PDF
导出
摘要 将基于自然邻接点插值的无网格局部Petrov-Galerkin方法应用于分析中厚板弯曲问题.自然邻接点插值创建的形函数具有Kronecker Delta函数性质,故能够准确地直接施加本质边界条件.在板中面上的局部多边形子域上采用局部Petrov-Galerkin方法建立系统平衡方程,这些子域由Delaunay三角形创建,采用高斯积分法进行域积分和边界积分.该方法集合了自然元法和无网格局部Petrov-Galerkin法的优点,易于施加本质边界条件,无需刚度矩阵的整合,得到的刚度矩阵是带状稀疏矩阵.通过算例分析,表明该方法计算简便,求解精度高,数值解稳定. This paper presented a meshless local Petrov-Galerkin method based on the natural neigh- bour interpolation for a plate described by the Reissner-Mindlin theory. The natural neighbour interpola- tion shape functions have Kronecker Delta function property, which facilitates the imposition of essential boundary conditions. The local weak forms of the equilibrium equations and the boundary conditions are satisfied in local polygonal sub-domains in the mean surface of the plate. These sub-domains were con- structed with Delaunay tessellations and domain integrals were evaluated over included Delaunay triangles by using the Gaussian quadrature scheme. The present method combines the advantage of easy imposition of essential boundary conditions of NEM with some prominent features of the MLPG. The numerical re- sults have shown that the proposed method is easy to implement and very effective for these problems.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期53-57,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10972075) 湖南大学汽车车身先进设计制造国家重点实验室自主研究课题资助项目(60870003) 高等学校博士学科点专项科研基金资助项目(20090161110012)
关键词 数值方法 弯曲分析 中厚板 无网格 自然邻接点插值 局部Petrov-Galerkin法 numerical methods bending analysis moderately thick plates meshless natural neigh- bour interpolation local Petrov-Galerkin method
  • 相关文献

参考文献11

  • 1MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars [J]. Monthly Notices of the Astronomical Society, 1977, 181: 375-389.
  • 2BELYTSCHKO T, LU Y, GU L. Element free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
  • 3ATLURI SN, ZHU T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].Computa- tional Mechanics, 1998, 22(2): 117-127.
  • 4BRAUN J, SAMBRIDGE M. A numerical method for solving partial differential equations on highly irregular evolving grids [J]. Nature, 1995, 376: 655-660.
  • 5SUKUMAR N, MORAN B, BELYTSCHKO T. The natural element method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43 (5) : 839 - 887.
  • 6SUKUMAR N, MORAN B, SEMENOV Y. Natural neigh- bour Galerkin method [J]. International Journal for Numerical Methods in Engineering, 2001, 50(1): 1-27.
  • 7HAN Z D, ATLURI S N. A meshless local Petrov-Galerkin (MLPG) approaches for solving 3-dimensional elasto-dynamics [J]. Computers, Materials & Continua, 2004, 1 (2). 129- 140.
  • 8LONG S Y, LIU K Y, HU D A. A new meshless method based on MLPG for elastic dynamic problems [J]. Engineering Analysis with Boundary Elements, 2006, 30 (1):43-48.
  • 9蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法[J].力学学报,2003,35(2):187-193. 被引量:42
  • 10WANG K, ZHOU S J, SHAN G J. The natural neighbour Petrov-Galerkin method for elasto-statics [J]. International Journal for Numerical Methods in Engineering, 2005, 63 (8): 1126-1145.

二级参考文献9

  • 1Belytschko T, Lu YY, Gu L. Element-free Galerkin method. Int J Num Meth Eng, 1994, 37:229~256
  • 2Belytschko T, Krongauz Y, Organ D. Meshless methods: An overview and recent developments. Comput Meth Appl Mech Eng, 1996, 139:3~47
  • 3Atluri SN, Zhu TL. A new meshless local PetrovGalerkin(MLPG) approach in computational mechanics.Computational Mechanic, 1998, 22(2): 117~127
  • 4Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 1995, 376:655~660
  • 5Sukumar N, Moran, Belytschko T. The nature element method in solid mechanics. Int J Num Meth Eng, 1998,43:839~887
  • 6Cueto E, Doblare M, Gracia L. Imposing essential boundary conditions in the natural element method by means of density-scaled α-shapes. Int J Num Meth Eng, 2000, 49:519~546
  • 7周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202. 被引量:99
  • 8宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展,2000,30(1):55-65. 被引量:66
  • 9龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518. 被引量:72

共引文献41

同被引文献55

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部