期刊文献+

基于正弦参数估计的工频干扰消除算法 被引量:7

Arithmetic for Subtracting Power Line Interference Based on Estimating Sinusoidal Parameters
原文传递
导出
摘要 混入心电(ECG)信号中的工频干扰会影响对ECG信号的自动分析。为了不造成ECG信号的变形,数字陷波器需要很窄的陷波带。但是,窄带宽陷波器又不利于消除频率偏移后的工频干扰(PLI)。为此,本文提出一种基于正弦参数估计的新算法。首先,通过线性段中的正弦值估计工频正弦信号的频率和相位;第二,由估计的正弦参数确定正弦函数;第三,根据最近邻原则,通过此函数计算靠近该线性段的非线性段中的PLI值。最后,将实际值减去相应的PLI值。实验证明:与其它算法相比,该算法能够更为有效地抑制非平稳正弦干扰。 Electrocardiogram(ECG) signals are often contaminated by residual power-line interference.In order to filter the noise and not to distort signal too much,certain types of digital notch filters need a narrow frequency band,but such a band leads to ineffective filtering in the case of frequency deviation of the interference.In this paper,we propose a novel arithmetic.Firstly,sinusoidal parameters(frequency and phase) are estimated from the sinusoidal values in the linear segment of ECG.Secondly,a sinusoid function in linear segment is determined by the estimated sinusoidal parameters.Thirdly,the interference values in the nonlinear segment closest to the linear segment are calculated by the sinusoid function.Lastly,we subtract the corresponding interference value from the real value.The experiment results show that,in comparison with other arithmetic,the novel arithmetic can more effectively remove the power-line interference from ECG signal.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第6期1243-1246,共4页 Journal of Biomedical Engineering
基金 广东省科技计划资助项目(2009B060700124) 广东省教育部产学研资助项目(2009B090600034) 广州市科技计划资助项目(10C32010808)
关键词 工频干扰 心电信号 正弦参数估计 线性段 Power line interference(PLI) Electrocardiogram(ECG) signal Sinusoidal parameter estimation Linear segment
  • 相关文献

参考文献8

  • 1MIHOV G,DOTSINSKY I A, Power-line interference elimination from ECG in case o, non-multiplicity between the sampling rate and the power-line frequency[J].Biomedical Signal Processing and Control, 2008,3 : 334-340.
  • 2LEVKOV C, MIHOV G, IVANOV R, et al. Removal of powerline interference from the ECG: A review of the subtraction procedure[J]. BioMedical Engineering OnLine, 2005,4:50-68.
  • 3ZIARANI A, KONRAD A, A nonlinear adaptive method of elimination of power line interference in ECG signals[J].IEEE Transactions on Biomedical Engineering, 2002,49(6):756-762.
  • 4AVENDANO L E, AVENDANO L D, CASTELLANOS C G, et al. Improvement of power line model in ECG for interference reduction using EKF[C]. CLAIB 2007, IFMBE Proceedings, 2007,18:109-113.
  • 5POORNACHANDRA S, KUMARAVEL N. A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function[J].Digital Signal Processing, 2008, 18: 116-126.
  • 6COSTA M H, MAURCIO C T. Removing harmonic power line interference from biopotential signals in low cost acquisition systems[J].Computers in Biology and Medicine, 2009, 39: 519-526.
  • 7MIHOV G, DOTSINSKY I A, GEORGIEVA T S. Subtraction procedure for power line interference removing from ECG: improvement for non-multiple sampling[J]. Journal of Medical. Engineering & Technology, 200S, 29 (5) : 238-243.
  • 8胡晓,王志中,任小梅,颜志国,王刚.基于非线性尺度小波变换的表面肌电信号的分类[J].生物医学工程学杂志,2006,23(6):1232-1236. 被引量:8

二级参考文献9

  • 1秦川,王志中,王刚,马波.利用AR模型参数分析损伤神经的针电极肌电信号[J].生物医学工程学杂志,2004,21(4):636-639. 被引量:5
  • 2胡晓,王志中,任小梅.小波变换和非线性分析在表面肌电信号中的应用及进展[J].北京生物医学工程,2006,25(1):105-108. 被引量:10
  • 3Karlsson S,Yu J,Akey M.Time-frequency analysis of myoelectric signals during dynamic contractions:a comparative study.IEEE Trans Biomed Eng,2000;47(2):228
  • 4Englehart K,Hudgins B,Parker PA,et al.Classification of the myoelectric signal using time-frequency based representations.Medical Engineering & Physics,1999;21:431
  • 5Hu X,Wang ZZ,Ren XM.Classification of surface EMG signal using relative wavelet packet energy.Computer Methods and Programs in Biomedicine,2005;79:189
  • 6Tscharner VV.Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution.Journal of Electromyography and Kinesiology,2000;10:433
  • 7Hudgins B,Parker P,Scott RN.A new strategy for multifunction myoelectric control.IEEE Trans Biomed Eng,1993;40(1):82
  • 8Xu ZQ,Xiao SJ.Digital filter design for peak detection of surface EMG.Journal of Electromyography and Kinesiology,2000;10:275
  • 9胡晓,王威廉.基于小波变换的第一心音频率检测[J].生物医学工程学杂志,2003,20(3):491-493. 被引量:3

共引文献7

同被引文献67

  • 1沈凤麟,李山河,梁岩.心电地图仪中工频干扰的一种滤除方法[J].数据采集与处理,1994,9(3):183-190. 被引量:2
  • 2彭中心.消除工频干扰的自适应滤波器[J].黄石理工学院学报,2006,22(1):30-32. 被引量:3
  • 3何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学(E辑),2006,36(8):864-879. 被引量:26
  • 4陈海燕,黄敏,姜云霞,海洁.利用小波变换检测心电图ST段[J].电机与控制学报,2006,10(5):531-533. 被引量:2
  • 5韦文斌,梁志远,李忠富.导弹出筒推力嵌入式检测系统[J].广西工学院学报,2006,17(4):32-35. 被引量:1
  • 6ERICD H,SOPHTA H Z,JAMES M L,DIRK Q F,RICHARD E G,JOHN J W,SCOTT S K,FRANCIS P M.An algorithm for continuous real-time QT interval monitoring[J].Journal of Electrocardiology,2006,39:S123-S127.
  • 7MICHAEL R,JONAS P,EVA P,STAFFORD G W,PYOTR P,OLLE P,GALEN S W.Comparison of high-frequency QRS components and ST-segment elevation to detect and quantify acute myocardial ischemia[J].Journal of Electrocardiology,2010,43:113-120.
  • 8JEONG G Y,YU K H,YOON M J,EIJI I.ST shape classification in ECG by constructing reference ST set[J].Medical Engineering & Physics,2010,32:1025-1030.
  • 9ZHANG Fei,LIAN Yong.QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks[J].IEEE Transactions on Biomedical Circuits and Systems,2009,3(4):220-228.
  • 10SLINANE Z E H,ALI A N.QRS complex detection using empirical mode decomposition[J].Digital Signal Processing,2010,20:1221-1228.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部