期刊文献+

基于源数估计的机械源信号盲分离方法研究 被引量:7

BLIND SEPARATION OF MECHANICAL SOURCE SIGNALS BASED ON THE ESTIMATION OF SOURCE NUMBERS
下载PDF
导出
摘要 传统的机械源分离方法往往事先假设源信号的个数已知,否则无法进行机械源信号分离。然而,在实际中源信号的个数往往是是未知的。针对此不足,结合变分贝叶斯独立变量分析和自相关测定,提出一种机械源数的最佳估计方法,它是通过比较不同模型的信度来确定出信源的个数。仿真和实验结果表明该方法是有效的,并具有很好的鲁棒性。 In the traditional blind separation method of mechanical sources,the number of mechanical sources is always assumed to be known.However,the mechanical sources do not suffice to this condition.In order to overcome this deficiency,combining of Bayesian inferring and automatic relevance determination (ARD),a new estimation method of mechanical sources based on Bayesian independent component analysis is proposed.In the proposed method,the optimal number of mechanical sources is determined by the evidence comparison of different models.The simulation and experiment results show that the proposed method is very effective and has good robustness.
出处 《机械强度》 CAS CSCD 北大核心 2011年第1期15-19,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(51075372 50775208) 河南省教育厅自然科学基金(2006460005 2008C460003)资助项目~~
关键词 盲源分离 独立变量分析 贝叶斯推论 信源估计 Blind source separation Independent component analysis Bayesian inferring Estimation of signal sources
  • 相关文献

参考文献5

  • 1李熠,何永勇,李志农,褚福磊.盲源分离和小波消噪在碰摩声频信号分析中的应用研究[J].机械强度,2005,27(6):719-724. 被引量:9
  • 2Jordan M I. l_earning in Graphical Models [ M ]. Cambridge, Massachusetts, USA: The M1T Press, 1999: 12-35.
  • 3MacKay D J C. Probable networks and plausible prediction a review of practical Bayesian methods of supervised neural networks[J]. Computation in Neural Systems, 1995(6) : 469-505.
  • 4Miskin J W. Ensemble learning for independent component analysis[ D]. The United Kingdom: University of Cambridge, 2000: 35-48.
  • 5Jordan M I, Jaakkola T S, Bayesian parameter estimation via variational methods[J]. Statistics and Computing, 2000(10): 25-37.

二级参考文献9

  • 1卢文秀.旋转机械碰摩的动力学特征与故障诊断[Z].北京: 清华大学精密仪器与机械学系,2002..
  • 2Kascak A F. Effects of different rub model on simulated rotor dynamics.AVSCOM Tr-83-C-8:NASA Technical paper 2220, 1984.
  • 3Muszynska A. Rub-an important malfunction in rotating machinery. Proceedings of the Senior Mechanical Engineering Seminar, Carson City Nevada: Bently Nevada Corporation, June 1983.
  • 4Muszynska A. Partial lateral rotor to stator rubs. Proceedings of the 3th International Conference on Vibration in Rotating Machinery, C281/84 Imech York, 1984.327-335.
  • 5Ehrich F F. Observation of subcritical subharmonic and chaotic response in rotor dynamics. Journal of Vibration and Acoustics,Transaction of the ASME, 1992,114:93-100.
  • 6Ehrich F F. Nonlinear phenomena in dynamics response of rotor in anisotropic mounting systems. Journal of Vibration and Acoustics, Transaction of the ASME, 1995, 117:154-164.
  • 7John L Isaksson. Dynamics of a rotor with annular rub. Proceedings of the Fourth International Conference on Rotor Dynamics, Chicago, USA, 1994.85-90.
  • 8Rivet B,Vigneron V,Paraschiv-Ionescu A,Jutten C.Wavelet de-noising for blind source separation in noisy mixtures. Lecture Notes in Computer Science, 2004, 3 195: 263-270.
  • 9Comon P. Independent component analysis, a new concept. Signal Processing, 1994, 36:287-314.

共引文献8

同被引文献37

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2003,30(11):13-15. 被引量:54
  • 3于志伟,苏宝库,曾鸣.小波包分析技术在大型电机转子故障诊断系统中的应用[J].中国电机工程学报,2005,25(22):158-162. 被引量:63
  • 4李熠,何永勇,李志农,褚福磊.盲源分离和小波消噪在碰摩声频信号分析中的应用研究[J].机械强度,2005,27(6):719-724. 被引量:9
  • 5何泽夏,李锋,孙秦,谭永华.涡轮盘结构模态分析[J].机械强度,2006,28(6):927-930. 被引量:14
  • 6Shi Zhenwei, Tan Xueyan, Jiang Zhiguo, etal. Noisy blind source separation by nonlinear autocorrelation [ C ]. The 3 rd International Congress on Image and Signal Processing (CISP) ,2010 ,Yantai, China:7:3152 - 3156.
  • 7Rivet B, Vigneron V, Paraschiv - Ionescu A, etal. Wavelet de - noising for blind source separation in noisy mixtures [ J ]. Lecture notes in computer science ,2004,3195 :263 - 270.
  • 8Wang J, Chang C I. Application of independent compo- nent analysis in endmember extraction and abundance quantification for hyperspectral imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44 (9) :2601-2616.
  • 9Kontoes C C, Raptis V. Thepotential of kernel classification techniques for land use mapping in urban areas using 5M-spatial resolution IRS-IC imagery[J]. International Journal of Remote Sensing,2000,21 (16) :3142-3151.
  • 10Chang C L. Hyperspectral Imaging: Techniques for Spectral detection and classification [ M ]. New York: Kluwer Academic/Plenum Publishers ,2003.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部