期刊文献+

磨削条件的优化及表面粗糙度的预测与控制 被引量:6

Optimization of Grinding Conditions and Prediction and Control of Surface Roughness
下载PDF
导出
摘要 利用信噪比试验设计法和二次回归设计技术,对平面磨削中砂轮转速、工件速度、径向进给量及砂轮粒度等因素对表面粗糙度的影响规律进行了分析,各因素对表面粗糙度的影响由大到小依次为砂轮粒度、径向进给量、砂轮转速和工件速度。同时建立起表面粗糙度的回归预测模型,并以F检验法对其进行检验,回归预测模型的显著性水平为0.01,回归效果良好。 Based on S/N-ratio experimental design and quadratic regression design technique, the effects of spindle speed, workpiece speed, depth of cut and grain size of wheel on the surface roughness of workpiece during plane grinding were investigated. It is found that the successive impact factors for the surface roughness are grain size, depth of cut, spindle speed and workpiece speed, respectively. An unary linear regression model about the surface roughness was established and tested by F method. The test results show the significance level of the unary linear regression model is 0. 01, which means a good regression effect.
作者 池龙珠
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第2期158-161,共4页 China Mechanical Engineering
基金 教育部留学回国人员科研启动基金资助项目(教外司留[2007]24号)
关键词 信噪比试验设计法 二次回归设计技术 磨削加工条件 表面粗糙度 S/N - ratio experimental design condition surface roughness quadratic regression design technology grinding
  • 相关文献

参考文献6

二级参考文献27

  • 1王家忠,王龙山,李国发,丁宁.外圆纵向磨削表面粗糙度的模糊预测与控制[J].吉林大学学报(工学版),2005,35(4):386-390. 被引量:7
  • 2史金飞,张晓玲,钟秉,林黄仁.BP神经网络在磨削烧伤诊断中的应用[J].东南大学学报(自然科学版),1996,26(4):52-55. 被引量:4
  • 3刘红星,魏强,屈梁生.基于人工神经网络建模的磨削烧伤预测[J].磨床与磨削,1996(3):28-30. 被引量:4
  • 4METAXIOTIS K,KAGIANNAS A,ASKOUNIS A,et al.Artificial intelligence in short term electric load forecasting:A state-of-the-art survey for the research[J].Energy Conversion and Management,2003(44):1 525-1 534.
  • 5VAPNIK V N.The nature of statistical learning theory[M].New York:Spring-Verlag,1999.
  • 6VAPNIK V N.An overview of statistical learning the-ory[J].IEEE Transaction Neural Networks,1999,10(5):988-999.
  • 7SUYKENS J A K,VANDEWALLE J.Least squares sup-port vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 8SUYKENS J A K,LUKAS S,VANDEWALLE J.Sparse least squares support vector machine classifiers[C]//Proceedings of ESANN '2000.8th European Symposium on Artificial Neural Networks,April 26-28,2000,Bruges,Belgium,2000:37-42.
  • 9WU Dehui.Prediction met hod for machining quality based on weighted least squares support vector machine[C]//Proceedings of the 6th World Congress on Control and Automation,Dalian,China.2006,6:21-23.
  • 10Zhang K, Butler C. A Fiber Optic Sensor for Measurement of Surface Roughness and Displacement Using Artificial Neural Networks. IEEE Transactions on Instrument and Measurement, 1997, 46(4) :899-902.

共引文献121

同被引文献84

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部