期刊文献+

基于贝叶斯理论的神经网络算法研究 被引量:9

Research of Neural Network Algorithm based on Bayes Theory
下载PDF
导出
摘要 本文研究了基于贝叶斯理论的神经网络算法,采用贝叶斯方法来确定超参数,使得神经网络在训练过程中能自适应地调节超参数的大小,得出目标函数的最优化参数,从而达到提高神经网络泛化能力的目的。还编制仿真软件,验证了该算法的可行性。 The neural network algorithm based on Bayes theory was researched in this paper. Using the Bayes method to confirm the parameters, the number of the parameters could be adjusted by the neural network, so as to get the optimization parameters of the objective function. So the generalization ability of the neural network was enhanced. The algorithm was proved to be feasible by compiling the simulation software.
作者 李鹏
机构地区 [
出处 《光机电信息》 2011年第1期28-32,共5页 OME Information
关键词 神经网络 贝叶斯 正则化 neural network Bayes regularization
  • 相关文献

参考文献4

二级参考文献12

  • 1Moody J E.The Effective Number of Parameters:An Analysis of Generalization and Regularization in Nonlinear Learning Systems[C].In :Advances in Neural Information Processing Systems 4,San Mateo,1992:847~854.
  • 2MacKay D C.Bayesian Interpolation[J].Neural Computation, 1992 ;4(3):415~447.
  • 3Sharker T K et al. Some Mathematical Considerations in Dealing with the Inverse Problems[J].IEEE Trans AP,1981 ;29(3):373~379.
  • 4Foresee F D,Hagan M T.Gauss-Newton Approximation to Bayesian Learning[C].In :Proceedings of the International Conference on Neural Networks, Houston,Texas, 1997.
  • 5Bishop C M.Neural Networks for Pattern Recognition[M].London:Clarenolon Press, 1995.
  • 6Nguyen D,Widrow B.Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights[C].In:Proceedings of the International Conference on Neural Networks,1997;3:21~26.
  • 7Hagan M T,Menhaj M.Training Feedforward Networks with the Marquardt Algorithm[J].IEEE Transactions on Neural Networks, 1994 ;5 (6):989~993.
  • 8Mackay D J C.Bayesian interpolation.Neural Computation,1992,4(3):415~447
  • 9Foresee F D,Hagan M T.Gauss-Newton approximation to bayesian regularization.In:Proceedings of the 1997 International Joint Conference on Neural Networks,Houston,Texas,1997.1930~1935
  • 10Lu Y W,Sundararajan N,Saratchandran P.A sequential learning scheme for function approximation using minimal radial basis function neural networks.Neural Computation,1997,9(3):461~478

共引文献71

同被引文献99

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部