期刊文献+

基于压缩感知的视频压缩方案设计与实现 被引量:4

Design and Realization of Video Compression Based-on Compressive Sensing
下载PDF
导出
摘要 基于压缩感知理论设计出了针对视频编解码的处理方案。该理论是近来提出的一种新颖的图像编解码算法,它能够对稀疏性信号进行远低于Nyquist采样率编码。应用该理论对视频图像进行采样以降低视频的采样速率,依据视频图像的帧内、帧间相关性对视频帧进行建模,并结合综合感知模型进行压缩感知恢复。实验结果表明,本文设计的模型具有较好的效果。 The scheme about video compression is designed which was based on compressive sensing.This novel algorithm that could code the sparse signal with far few sampling ration by Nyquist had been put forward recently.The video image is sampled with compressive sensing in order to reduce the sampling ration on video,and the video compression model is constructed combinging with the joint sparsity model by means of the fact which video image having the relationship on framer and near framer and also itself.The result of experiment proposes the good effectiveness of our model.
作者 古勇 田翔
出处 《科学技术与工程》 2011年第2期359-362,共4页 Science Technology and Engineering
关键词 压缩感知理论 相关性 联合稀疏性 compressive sensing relationship joint sparsity
  • 相关文献

参考文献5

  • 1Donoho D. Compressed sensing. IEEE Trans Info Theory,2006; 52 (4) :1289-1306.
  • 2Cand~s E. Compressive sampling, in International Congress of Mathe- matics, Madrid, 2006.
  • 3Richard B. Compressive sensing. IEEE Signal Processing Magazine,July 2007.
  • 4Candes E. The restricted isometry property and its implications for compressed sensing caltech. Pasadena, CA, 2008.
  • 5Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction : application to compressed sensing and other in- verse problems. IEEE Journal of Selected Topics in Signal Process- ing, 2007 ;1 (4) :586-597.

同被引文献18

  • 1Candes [J,RombergJ,and Tao T. Robust uncertainty principles.exact signal reconstruction from highly incomplete frequency/nformat/on[J].IEEE Transactions on Information Theory, 2006,52(2) : 489-509.
  • 2Candès Emmanuel J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians,Madrid,August 22-30,2006:invited lectures,2006:1433-1452.
  • 3Donoho David Leigh.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 4Candès Emmanuel J,Wakin Michael B.An introduction to compressive sampling[J].Signal Processing Magazine,IEEE,2008,25(2):21-30.
  • 5Dai Wei,Milenkovic Olgica.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230-2249.
  • 6Needell Deanna,Tropp Joel A.CoS aM P:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 7Sundman Dennis,Chatterjee S,Skoglund Mikael.Look ahead parallel pursuit[C]//Swedish Communication Technologies Workshop(SweCTW),Stockholm,Sweden,IEEE,2011:114-117.
  • 8Chatterjee Saikat,Sundman Dennis,Skoglund Mikael.Look ahead orthogonal matching pursuit[C]//International Conference on Acoustics,Speech and Signal Processing(ICASSP),IEEE,2011:4024-4027.
  • 9Candès Emmanuel J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部