期刊文献+

基于ICP和CPD的颅骨自动配准算法 被引量:6

Algorithm for Automated Skull Registration Based on ICP and CPD
下载PDF
导出
摘要 颅骨配准是计算机辅助的三维颅面复原技术的重要研究内容之一。颅骨配准的准确与否会直接影响到将来颅面复原的准确性。为此,提出一种新的3D颅骨自动配准算法。该算法考虑到颅骨模型的特殊结构与实现的简便性,首先自动提取颅骨不光滑区域的脊线(Crest lines)以及光滑区域的顶点作为特征点,然后利用迭代最近点(ICP)算法进行粗配准,在此基础上,再采用CPD(Coherent Point Drift)算法对颅骨进行精确配准。实验结果表明,该算法能有效提高颅骨配准的准确性并对缺损颅骨具有一定的鲁棒性。 Skull registration is important in computer-aided three-dimensional craniofacial reconstruction.The accuracy of the skull registration will directly affect the validity of the reconstruction.In the paper,an automatic method for 3D skull registration is proposed.It consists of three steps.First,some points on the crest lines and the smooth surfaces of the skulls are defined as landmarks in consideration of the special structure of skulls.Then,ICP algorithm is applied to roughly align the two skulls.Finally,a fine registration based on the CPD algorithm is implemented.Experimental results demonstrate that the algorithm can effectively improve the accuracy of the skull registration and is robust in the presence of the partial skull.
出处 《计算机技术与发展》 2011年第2期120-122,126,共4页 Computer Technology and Development
基金 国家自然科学基金重点项目(60736008) 国家"863"高技术研究发展计划项目基金(2008AA01Z301) 北京市自然科学基金重点项目(4081002)
关键词 配准 特征点 CREST LINES CPD registration landmark Crest lines CPD
  • 相关文献

参考文献4

二级参考文献25

  • 1Rong-HuaLiang,Zhi-GengPan,ChunChen.New Algorithm for 3D Facial Model Reconstruction and Its Application in Virtual Reality[J].Journal of Computer Science & Technology,2004,19(4):501-509. 被引量:3
  • 2李一波,刘敏,王庆军,姬晓飞.基于分区和凸包的3维相貌复原[J].中国图象图形学报,2005,10(7):862-866. 被引量:8
  • 3孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38.
  • 4Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320.
  • 5Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72.
  • 6贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994.
  • 7Parzen E. On the estimation of a probability density function andmode [ J ]. Annals of Mathematical Statistics, 1962,33 : 1065 - 1076.
  • 8Wang A P, Wang H. Minimising entropy and mean tracking control for affine nonlinear and non - Gaussian dynamic stochastic system[J]. IEE Proceedings Control Theory & Application, 2005,151 (4) : 405 - 520.
  • 9Wang A P, Wang H, Tan J. Optimal Filtering for Multivariable Stochastic System via Residual Probability Density Function Shaping[ C]//Proceedings of SICE 2005 Annual Corderence. [s. l. ] : [s. n. ] ,2005:215 - 219.
  • 10Guo L, Wang H. Mininum entropy filtering for multivariate stochastic systems with non- Gaussian noises [ J ]. IEEE Transactions on Automatic Control,2006,51(4) :670 -695.

共引文献78

同被引文献58

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部