期刊文献+

关系学习中贝叶斯分类算法的比较研究 被引量:6

Comparison and Research of Bayesian Classification Algorithm in Relational Learning
下载PDF
导出
摘要 数据分类是数据挖掘的主要内容之一,通过分析训练数据样本,产生关于类别的精确描述。贝叶斯分类是数据挖掘领域中一种常用的有效分类方法。在关系学习中,贝叶斯分类算法有很多种,对这些算法进行总结、比较,指出其优点与不足,对提高分类效率有很大帮助。本文对已有的关系学习中贝叶斯分类算法作了详细的比较,并进行归纳总结。在单关系学习中重点介绍了几种基于粗糙集的贝叶斯分类器和加权贝叶斯分类算法,并分析了各种方法的模型、权值确定方法、优缺点及进一步工作方向。在多关系学习中主要比较了几种基于语义关系图的贝叶斯分类算法,重点介绍了MI-MRNBC模型。最后对本文工作进行了总结与展望,提出进一步工作方向是研究基于粗糙集的多关系贝叶斯分类算法。 Data classification is one of the main content of data mining. Through analyzing training data samples, it is resulted in the accurate description on the classification. Bayesian classification is an effective simple classification algorithm in the field of data mining. In the relational learning, there are many kinds of Bayesian classification algorithms. It would be of considerable help to improve classification efficiency that summarize, compare these algorithms and point out its advantages and disadvantages. In this paper, some algorithms have made a detailed comparison and summary. In single relational learning, it is focus on several Bayesian classification algorithms based on Rough set and weighted Bayesian classification algorithms and analysis the models, methods to determine weights, advantages, disadvantages and the direction of further work. In multi- relational learning, the main comparison is several kinds of Bayesian classification algorithms based on Semantic relationship graph and focuses on the MI-MRNBC model. Finally, it is the summary and prospect of this article. The direction of further work is to study multi-relational Bayesian classification algorithm based on Rough set.
作者 王晶 张春英
出处 《河北理工大学学报(自然科学版)》 CAS 2011年第1期91-94,共4页 Journal of Hebei Polytechnic University:Social Science Edition
基金 国家自然科学基金资助项目 编号:60673136 河北省教育厅资助项目 编号:z2009120 河北理工大学自然科学基金资助项目 编号:z0810
关键词 关系学习 贝叶斯分类算法 单关系 多关系 语义关系图 relational learning Bayesian classification algorithm single relation, multi-relation Semantic relationship graph
  • 相关文献

参考文献15

二级参考文献133

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 3程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 4邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 5曾黄麟.粗集理论及其应用(修订版)[M].重庆:重庆大学出版社,1998..
  • 6Flach P A, Lachiche N. 1BC: a first-order Bayesian classifier [C]//Proceedings of the 9th International Workshop on Inductive Logic Programming , volume 1634 of Lecture Notes in Arti ficial Intelligence, Springer-Verlag, 1999 : 92 - 103.
  • 7Peter A. Flach and Nicolas Lachiche. Naive Bayesian classification of structured data[J]. Machine Learning , 2004,57(3) : 233 -269.
  • 8Lachiche N, Flach P A. 1BC2: a true first-order Bayesian classifier[C]//Proceedings of the 12th International Conference on Inductive Logic Programming, Springer-Verlag, 2002:133 - 148.
  • 9Pompe U, Kononenko I. Naive Bayesian classifier within ILP-R [C]//Proc. of the 5^th Int. Workshop on Inductive Logic Programming, Dept. of Computer Science, Katholieke Universiteit Leuven, 1995:417- 436.
  • 10Ceci M, Appice A, Malerba D. Mr-SBC:a multi-relational naive Bayes classifier[C]//Knowledge Discovery in Databases PKDD Lecture Notes in Artificial Intelligence, 2003,2838 : 95 - 106.

共引文献178

同被引文献39

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部