期刊文献+

微阵列数据中Top-k频繁闭合项集挖掘 被引量:1

Top-k Frequent Closed Item Set Mining in Microarray Data
下载PDF
导出
摘要 现有大部分微阵列数据中频繁闭合项集的挖掘需要事先给定最小支持度,但在实际应用中该最小支持度很难确定。针对该问题,提出top-k频繁闭合项集挖掘算法,基于自顶向下宽度优先搜索策略挖掘项集长度不小于min_l的top-k频繁闭合项集,并对搜索空间进行有效修剪,从而提高搜索速度。实验结果表明,该算法的时间性能在多数情况下优于CARPENTER算法。 Most previous mining frequent closed item sets require the specification of a minimum support threshold in microarry data. However, it is difficult for users to provide an appropriate minimum support threshold in practice. Aiming at this problem, this paper presents a top-k frequent closed item set and an algorithm in microarray data. The algorithm uses top-down breadth-first search strategy to mining top-k frequent closed item set of length no less than given value min_1 and pruning the search space effectively to improve the search speed. Experimental result shows that the time performance of this algorithm outperforms the CARPENTER algorithm in most cases.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第2期60-62,共3页 Computer Engineering
基金 国家留学基金资助项目
关键词 微阵列数据 top—k频繁闭合项集 自顶向下 宽度优先 microarray data top-k frequent closed item set top-down breadth-first
  • 相关文献

参考文献5

  • 1Pan Feng, Cong Gao, Tung A K H, et al. Carpenter: Finding Closed Patterns in Long Biological Datasets[C]//Proc. of SIGKDD'03. Washington D. C., USA: [s. n.], 2003.
  • 2Liu Hongyan, Wang Xiaoyu, He Jun, et al. Top-down Mining of Frequent Closed Patterns from Very High Dimensional Data[J]. IEEE Information Sciences, 2009, 179(7): 899-924.
  • 3Wang Jianyong, Han Jiawei, Lu Yin, et al. TFP: An Efficient Algorithm for Mining Top-k Frequent Closed Itemsets[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(5): 652-664.
  • 4才科扎西,黄景廉.基于前缀树的高效频繁项集挖掘算法[J].计算机工程,2010,36(4):42-44. 被引量:5
  • 5St. Jude Research. Datafile[EB/OL]. [2010-03-10]. http://www. stjuderesearch.org/data/ALL 1/all_datafiles.html.

二级参考文献5

  • 1Lee Wan-Jui, Jiang Jung-Yi, Lee Shie-Jue. Mining Fuzzy Periodic Association Rules[J]. Data Knowledge Engineering, 2008, 65(3): 442-462.
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD'93. Washington D. C, USA: ACM Press, 1993.
  • 3Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the ACM SIGMOD'00. Dallas, TX, USA: ACM Press, 2000.
  • 4Zaiane R. Incremental Mining of Frequent Patterns Without Candidate Generation or Support Constraint[C]//Proc. of the 7th Int'l Conf. on Database Engineering and Applications. [S. I.]:IEEE Press, 2003.
  • 5曹洪其,姜志峰,孙志挥.基于FP-tree的多层关联规则快速挖掘算法[J].计算机工程,2007,33(19):66-68. 被引量:2

共引文献4

同被引文献14

  • 1印莹,赵宇海,张斌,王国仁.时序微阵列数据中的同步和异步共调控基因聚类[J].计算机学报,2007,30(8):1302-1314. 被引量:5
  • 2Katsigiannis K,Zacharia E,Maroulis D.Grow-cut Based Automatic c DNA Microarray Image Segmentation[J].IEEE Transactions on Nano Bioscience,2015,14(1):138-144.
  • 3Sakashita H,Akamine S,Ishida T.Erratum to:Identification of the NEDD4L Gene as a Prognostic Marker by Integrated Microarray Analysis of Copy Number and Gene Expression Profiling in Non-small Cell Lung Cancer[J].Annals of Surgical Oncology,2014,21(4):783-792.
  • 4Patrick C H,Keith C C,Yao Xin.An Evolutionary Clustering Algorithm for Gene Expression Microarray Data Analysis[J].IEEE Transactions on Evolutionary Computation,2006,10(3):296-314.
  • 5Chan S C,Wu Haichang,Tsui K M.A New Method for Preliminary Identification of Gene Regulatory Networks from Gene Microarray Cancer Data Using Ridge Partial Least Squares with Recursive Feature Elimination and Novel Brier and Occurrence Probability Measures[J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2012,42(6):1514-1528.
  • 6Lee C P,Leu Y.A Novel Hybrid Feature Selection Method for Microarray Data Analysis[J].Application Software Computing,2011,11(1):208-213.
  • 7Dolled-Filhart M,Ryden L,Cregger M.Classification of Breast Cancer Using Genetic Algorithms and Tissue Microarrays[J].Clinical Cancer Research,2006,12(21):6459-6468.
  • 8杨广源,付旭平,黄燕,李瑶.一种基于非线性降维和Procrustes分析的基因选取方法[J].复旦学报(自然科学版),2009,48(3):338-347. 被引量:3
  • 9罗美淑,刘世勇,石磊,于化龙.一种基于微阵列数据的集成分类方法[J].计算机应用研究,2010,27(1):104-106. 被引量:2
  • 10于化龙,顾国昌,赵靖,刘海波,沈晶.基于DNA微阵列数据的癌症分类问题研究进展[J].计算机科学,2010,37(10):16-22. 被引量:20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部