期刊文献+

最近特征线在音频分类中的应用

Application of Nearest Feature Line in Audio Classification
下载PDF
导出
摘要 通过提取基音频率、明亮度、带宽、过零率、响度、均方根、相邻点之间距离的均值和方差及Mel倒谱系数这8个特征构造特征集,在此基础上提出一种基于最近特征线的音频分类算法,对其进行枪声、鞭炮声、喇叭声及说话声的分类实验中,结果表明,该算法的分类效果较好,错误率可低至11.76%。 This paper constructs the feature set by extracting eight features including perceptual features like pitch frequency, brightness, bandwidth, zero-crossing rate, loudness, Root Mean Square(RMS), the distance between the adjacent point of the mean value and Mel Frequency Cepstral Coefficients(MFCC), and proposes an audio classification algorithm based on Nearest Feature Line(NFL). It is applied to classification experiment with four audio including guns, banger, horn and talks, and the result shows that the algorithm is effective in classification and its error rate can reduce to 11.76%.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第2期151-153,共3页 Computer Engineering
关键词 音频分类 最近特征线 音频特征选取 MEL倒谱系数 audio classification Nearest Feature Line(NFL) audio feature extraction Mel Frequency Cepstral Coefficients(MFCC)
  • 相关文献

参考文献8

二级参考文献34

  • 1雷浩,李生红.基于改进Kohonen网和BP网的色情图像识别技术[J].计算机工程,2005,31(10):164-167. 被引量:7
  • 2John Saunders. Real-time discrimination of broadcast speech/music [C]. Int' 1 Conf Acoustic, Speech, and Signal Processing, Atlanta, 1996.
  • 3Scheirer E, Slaney M. Construction and evaluation of a robust multifeature music/speech discriminator[C]. Int'1 Conf Acoustic, speech, and Signal Processing, Munich: IEEE Press, 1997:1331 - 1334.
  • 4[1]Feiten, B., Frank, R., Ungvary, T. Organization of sounds with neural nets. In: Proceedings of the 1991 International Computer Music Conference, International Computer Music Association. San Francisco, 1991. 441~444.
  • 5[2]Feiten, B., Günzel, S. Automatic indexing of a sound database using self-organizing neural nets. Computer Music Journal, 1994,18(3):53~65.
  • 6[3]Wold, E., Blum, T., Keislar, D., et al. Content-Based classification, search and retrieval of audio. IEEE Multimedia Magazine, 1996,3(3):27~36.
  • 7[4]Foote, J.T. Content-Based retrieval of music and audio. Multimedia Storage and Archiving Systems II, 1997,32(29):138~147.
  • 8[5]Li, S.Z. Content-Based classification and retrieval of audio using the nearest feature line method. IEEE Transactions on Speech and Audio Processing, 2000,8(5):619~625.
  • 9[6]Li, S.Z., Guo, Guo-dong. Content-Based audio classification and retrieval using SVM learning. In: Proceedings of the 1st IEEE Pacific-Rim Conference on Multimedia. 2000.
  • 10[7]Jiang, Hao, Lin, Tony, Zhang, Hong-jiang. Video segmentation with the support of audio segmentation and classification. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2000), Vol 3. NY: IEEE, 2000. 1507~1510.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部