期刊文献+

全光纤安防系统模式识别混合编程的实现 被引量:6

Implementation of pattern recognition in all fiber security monitoring system using mixed programming
下载PDF
导出
摘要 介绍了宽域全光纤监控预警系统及光纤扰动信号模式识别算法.利用小波包分解对信号进行分解与重构,并提取各频段内信号分量能量谱作为特征向量;应用综合考虑观测数据和确定性先验知识的BVC-RBF神经网络实现信号分类,提高了网络的泛化能力.利用Matlab引擎、动态链接库(DLL)、组件对象模型(COM)3种混合编程方法将Matlab开发的算法程序集成到VC编写的用户操作平台中.使用文本文件存取网络数据,克服了Matlab无法编译神经网络工具箱函数的缺陷,并从操作复杂度、执行时间、内存消耗等方面对3种方式进行对比,最终选定动态链接库作为系统应用方案. An all fiber security monitoring system and pattern recognition algorithm on fiber disturbance signal is presented.As a method of analyzing and reconstructing signal wavelet packet is adopted to extract feature vector.Classification is realized by BVC-RBF(boundary value constraints-radial basis function) neural network,which improves generalization by considering deterministic prior knowledge besides observational data.Pattern recognition algorithm is developed with Matlab and integrated into the application developed with VC through three mixed programming methods: Matlab engine,dynamic link library(DLL),component objective model(COM).Network data are read and written through text file to overcome the limitation that Matlab can not compile functions in neural network toolbox.Operation complexity,running time and memory consumption of these methods are compared and dynamic link library is the final choice.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期41-46,共6页 Journal of Southeast University:Natural Science Edition
关键词 光纤扰动信号 模式识别 小波包分解 BVC-RBF网络 混合编程 fiber disturbance signal pattern recognition wavelet packet neural network mixed programming
  • 相关文献

参考文献1

二级参考文献6

共引文献1

同被引文献41

  • 1饶云江,吴敏,冉曾令,喻瑜.基于准分布式FBG传感器的光纤入侵报警系统[J].传感技术学报,2007,20(5):998-1002. 被引量:20
  • 2Mahmoud S S, Katsifolis J. Robust event classification for a fiber optic perimeter intrusion detection system using level crossing features and artificial neural networks[J]. Proceedings of SPIE, 2010, 7677: 767708.
  • 3Seedahmed S M, Jim K. Elimination of rain-induced nuisance alarms indistributed fiber optic perimeter intrusion detection systems [J]. Proceedings of SPIE, 2009, 7316: 731604.
  • 4倪明,陈智慧,万遂人,等.基于神经网络和支持向量机的模式识别应用研究[R].东南大学校庆研究生学生报告会,南京:东南大学,2011.
  • 5Vidakovic B L, Ozoya C B. On time-dependent wavelet denoising[J]. IEEE Transactions on Signal Processing, 1998, 46(9): 2549-2551.
  • 6Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
  • 7Sachs L. Applied statistics: A handbook of techniques [M]. New York: Springer-Verlag, 1984.
  • 8Duda R O, Hart P E, Stork D G. Pattern classification [M]. Beijing: China Machine Press, 2009.
  • 9罗光明,张春熹,马宗峰,蓝天.分布式光纤安防系统传感和定位技术研究[J].压电与声光,2009,31(3):327-329. 被引量:21
  • 10夏思宇,潘泓,金立左.非平衡二叉树多类支持向量机分类方法[J].计算机工程与应用,2009,45(17):167-169. 被引量:17

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部