期刊文献+

基于改进PSO算法的多变量PID型神经网络控制 被引量:9

Improved PSO-based Multivariable PID-like Neural Network Control
原文传递
导出
摘要 充分利用PID结构简单、稳定性强的良好性能以及神经网络的自学习和自适应的特长,引入粒子群优化(PSO)学习算法,设计一种多变量自适应PID型神经网络控制器。神经网络的隐含层由带有输出反馈和激活反馈的混合局部连接递归网络组成,采用PSO学习算法优化神经网络参数。在深入研究分析PSO算法的基础上,引入变异因子和惯性权重自适应策略对该算法进行改进,既发挥了PSO算法随机优化收敛速度快的优点,又克服了该算法易陷入局部最优点的缺点,显著提高了控制系统的性能指标。最后,通过对二级倒立摆控制的仿真分析,证明该算法具有较强的鲁棒性。 Making full use of the advantages of simple construction and strong stability of PID and self-learning and adaptability of neural networks,introducing PSO(Particle Swarm Optimization) algorithm,a multivariable adaptive neural network controller was designed.It was composed of a hybrid locally connected recurrent network with an activation feedback and an output feedback in the hidden layer,PSO algorithm was applied in neural network parameter learning.On the basis of the research and analysis for PSO,the variability factor and inertia weight self-adaptability strategy were introduced to improve the PSO algorithm.The improved PSO algorithm not only plays the advantage of fast convergence speed,but also conquers the shortcoming of PSO algorithm which is easily plunging into the local minimum,and improved the performance of control system greatly.Finally,simulation of the control of double inverted pendulum shows that the proposed algorithm has strong robust ability.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第2期363-366,385,共5页 Journal of System Simulation
基金 国家自然科学基金(60774059)
关键词 多变量系统 PID型神经网络 PSO算法 二级倒立摆 multivariable PID-like neural network particle swarm optimization double inverted pendulum
  • 相关文献

参考文献6

二级参考文献19

  • 1谭永红.神经网络逢适应PID控制及其应用[J].模式识别与人工智能,1993,6(1):81-85. 被引量:29
  • 2王耀南,童调生,蔡自兴.基于神经元网络的智能PID控制及应用[J].信息与控制,1994,23(3):185-189. 被引量:44
  • 3张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003..
  • 4Chen C L,IEE Proc Control Theory Appl,1996年,143卷,2期,200页
  • 5Chan K C,Artif Intel Eng,1995年,9卷,3期,167页
  • 6Ma X L,Proc Artificial Neural Networkin Engineering Conf,1991年,625页
  • 7Grimble M J.Controllers with a PID structure[J].Journal of Dynamic Systems,Measurement and Control,Transactions ASME,1990,112(3):325 ~330.
  • 8Chen B S,Chiang Y M,Lee C H.A genetic approach to mixed optimal PID control[J].IEEE Control System s Magazine,1995,15(5):51~56.
  • 9Bao J,Forbes J F,McLellan P J.Robust multiloop PID controller design:a successive semidefinite programming approach[J].Industrial and Engineering Chemistry Research,1999,38 (9):3407~3413.
  • 10Hunt K J,Sbarbaro D,Zbikowski R,et al.Neural networks for control systems-a survey[J].Automatica,1992,28(6):1083~1112.

共引文献113

同被引文献86

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部