期刊文献+

箱形船体波浪和波浪压力的非线性时域模型 被引量:4

TIME-DOMIAN MODEL OF NONLINEAR WAVE FORCES ON A BOX-SHAPED SHIP
原文传递
导出
摘要 该文将耦合计算模型应用于计算固定箱形船体上非线性波浪压力,研究了将该准三维模型应用于物体三维波浪压力的计算能力。为了提高计算强非线性波浪的能力,在方程中加入了高阶非线性项,并进行了箱体波浪压力的测量模型实验,以验证计算结果。计算模型将船体底面以下水域取为内域,其余水域为外域。内域用欧拉方程计算,外域采用Boussinesq方程。内外域在交界面处相耦合。数值计算结果与实验结果进行了对比,符合良好。该计算模型具有计算简单、速度快,能适应变化的地形的特点。 A nonlinear time-domain coupled numerical model is adopted in order to calculate the nonlinear wave forces acted on a box-shaped ship in harbor.A higher order nonlinear term is also included in the equations in order to extend the model to a fully nonlinear problem for shallower water waves.The whole domain is divided into an inner domain and an outer domain.The inner domain is the area beneath the ship hull,which is governed by the Euler equations.The outer area is the area between the ship and harbor walls,which is governed by the higher order Boussinesq equations.A relevant pressure physical experiment was conducted to validate the model,and a good agreement is obtained between the numerical results and the experimental data.The numerical computations of the model are simple and efficient,which is particularly useful for the computation of the non-linear wave forces on a ship in a harbor.
出处 《工程力学》 EI CSCD 北大核心 2011年第2期239-245,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10672034) 辽宁省教育厅高等学校自然科学基金项目
关键词 非线性波浪 BOUSSINESQ方程 欧拉方程 耦合模型 有限差分法 nonlinear wave Boussinesq equations Euler equations coupled model finite-difference method
  • 相关文献

参考文献8

  • 1Bai W, Eatock Taylor. Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition [J]. Appl OceanRes, 2007, 29(1-2): 55-71.
  • 2Qi Peng, Zou Zhili, Wang Yongxue. A 3-D composite model for numerical simulation of nonlinear waves [C].Seattle, USA: Proceedings of the Tenth International Offshore and Polar Engineering Conference, 2000: 68- 73.
  • 3Wang Daguo, Zou Zhili, Tham L G. Tang Chun'an. A three-dimensional coupled numerical model of nonlinear waves in a harbor [J]. Science in China Series E: Technological Sciences, 2008, 51(12): 2185-2196.
  • 4Li Y S, Zhan J M. Boussinesq-type model with boundary fitted coordinate system [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2001, 127(3): 152- 160.
  • 5王大国,邹志利,唐春安.波浪对箱形船作用的三维耦合计算模型[J].船舶力学,2007,11(4):533-544. 被引量:10
  • 6邹志利,王大国.波浪水槽中非线性浅水波传播特性与模拟[J].海洋工程,2005,23(3):23-30. 被引量:8
  • 7Zou Z L. Higher order Boussinesq equations [J]. Ocean Engineering, 1999, 26: 767-792.
  • 8ZouZhili,WangTao,ZhangXiaoli,DarrenSpratt.One-dimensional numerical models of higher-order Boussinesq equations with high dispersion accuracy[J].Acta Oceanologica Sinica,2003,22(2):287-300. 被引量:10

二级参考文献21

  • 1Sun, DP,Li, YC,Teng, B.Three-Dimensional Boundary Element Method Applied to Nonlinear Wave Transformation[J].China Ocean Engineering,1999,14(2):163-170. 被引量:4
  • 2邹志利,王大国.波浪水槽中非线性浅水波传播特性与模拟[J].海洋工程,2005,23(3):23-30. 被引量:8
  • 3Peregrine D H. Long waves on a beach[J]. J Fluid Mech, 1967, 27: 815-827.
  • 4梅强中.水波动力学[M].北京:科学出版社,1984..
  • 5Chapalain G, Cointe R, Temperville A. Observed and modeled resonantly interacting progressive water-waves[ J]. Coastal Engineering,1992, 16: 267- 300.
  • 6Boczar-Karakiewicz B, Bona J L, Cohen D L. Transformation of wave profile in shallow water[J]. Fourier analysis. Arch Hydrotech,1972, 19: 197-209.
  • 7Madsen P A, Sфrensen O R. Bound waves and triad interactions in shallow water[J]. Ocean Engng, 1993, 20: 369- 388.
  • 8Zhang Xiaotu,Teng Bin,Ning Dezhi.Simulation of fully nonlinear 3-D numerical wave tank[J].China Ocean Engineering,2004,18:59-68.
  • 9Nichols B D,Hirt C W.Volume of Fluid method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39:201-225.
  • 10Wang Yongxue,Sy T C.Numerical simulation of breaking waves against vertical wall[C]//Proc of 2nd Int of offshore and Polar Eng Conf.San Francisco,Calif,1992.139-145.

共引文献25

同被引文献39

  • 1马小舟,董国海,滕斌.基于Boussinesq方程的波浪模型[J].力学学报,2006,38(6):760-766. 被引量:6
  • 2王大国,邹志利,唐春安.波浪对箱形船作用的三维耦合计算模型[J].船舶力学,2007,11(4):533-544. 被引量:10
  • 3王大国,邹志利,唐春安.港口非线性波浪耦合计算模型研究[J].力学学报,2007,39(5):587-594. 被引量:7
  • 4Shuxue Liu,Zhongbin Sun,Jinxuan Li.An unstructured FEM model based on Boussinesq equations and its application to the calculation of multidirectional wave run-up in a cylinder group[J].Applied Mathematical Modelling.2011(9)
  • 5Volker Roeber,Kwok Fai Cheung.Boussinesq-type model for energetic breaking waves in fringing reef environments[J].Coastal Engineering.2012
  • 6Fengyan Shi,James T. Kirby,Jeffrey C. Harris,Joseph D. Geiman,Stephan T. Grilli.A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J].Ocean Modelling.2011
  • 7Jana Orszaghova,Alistair G.L. Borthwick,Paul H. Taylor.From the paddle to the beach – A Boussinesq shallow water numerical wave tank based on Madsen and S?rensen’s equations[J].Journal of Computational Physics.2011(2)
  • 8Mara Tonelli,Marco Petti.Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone[J].Ocean Engineering.2010(7)
  • 9J.B. Shiach,C.G. Mingham.A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations[J].Coastal Engineering.2008(1)
  • 10Z.L. Zou,K.Z. Fang.Alternative forms of the higher-order Boussinesq equations: Derivations and validations[J].Coastal Engineering.2008(6)

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部