摘要
文章运用消除趋势波动分析(DFA)方法,计算了四川省工业增加值季度数据的标度指数,该指数表明四川省工业增加值的时间序列值具有长程相关特性,其预测模型有较好的拟合效果。在此基础上根据自组织数据挖掘的理论与方法,提出了自组织组合预测模型。模型预测结果及与ARIMA、GMDH自回归、SPSS曲线估计等三个单项预测模型及最优线性组合、人工神经网络组合等常用的组合预测模型的对比表明,自组织组合预测模型不仅改善了对数据样本的拟合精度,而且显著提高了模型的预测能力。
出处
《统计与决策》
CSSCI
北大核心
2010年第23期42-45,共4页
Statistics & Decision
基金
国家自然科学基金资助项目(70771067)