期刊文献+

基于视频监控的运动目标跟踪算法 被引量:9

Motion Targets Tracking Algorithm Based on Video Surveillance
下载PDF
导出
摘要 利用Kalman滤波思想对运动目标的前时刻状态信息进行预测,获取重心位置与形态紧密度估计值;将估计值与当前时刻观测值进行匹配,根据匹配误差修正运动目标的速度与紧密度变化值,通过递归算法实现常态下运动目标的准确、快速跟踪.针对复杂场景下由于运动遮挡造成无法准确估计目标运动轨迹,采用灰色模型GM(1,1)保证了跟踪过程的连续、稳定.最后,通过不同交通场景的视频序列对本文算法进行了验证,结果表明本文方法具有较好的适应性、鲁棒性,可实现复杂遮挡情况下连续、稳定、实时的目标运动跟踪. Motion targets tracking is an important part of video surveillance,which offers technical support for researching motion characteristic and traffic behaviors of moving objects in traffic flow.Firstly,we predict the moving target state information of the former observation time by Kalman filter,and obtain the geometric center and the compactness of the object;then calculate the velocity and the compactness variety with matching errors between predicted values of the former time and observed values of the current time.From these step,we can achieve accurate,fast motion tracking results through recursive algorithm.In order to ensure the continuity and the stabilization in the tracking process,occlusion handling method based on gray model(GM(1,1)) is proposed.At last,we validate the proposed algorithm under different traffic scenes.Results show that the algorithm is robust and adaptive in multiple targets motion tracking even in the case of occlusion in real-time.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第12期1683-1690,共8页 Journal of Beijing University of Technology
基金 国家'863'计划项目资助(2009AA11Z210) 国家自然科学基金青年科学基金项目(50808092) 吉林省科技发展计划项目(20080432)
关键词 智能交通 视频监控 运动跟踪 特征匹配 KALMAN滤波 灰色模型 intelligence transportation video surveillance motion tracking feature matching Kalman filter gray model
  • 相关文献

参考文献11

  • 1KOLLER D, DANILIDIS K, NAGEL H H. Model-based object tracking in monocular image sequences of road traffic scenes [ J]. International Journal of Computer Vision, 1993, 10 (3) : 257-281.
  • 2COIFMAN B, BEYMER D, MALIK J. A real-time computer vision system for vehicle tracking and traffic surveillance[ J]. Transport Res: Part C, 1998, 6(4) : 271-288.
  • 3PARAGIOS N, DERICHE R. Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision[J]. Visual Commun Image Represent, 2002: 249-268.
  • 4KATO J, WATANABE T, JOGA S, et al. An HMM /MRF based stochastic framework for robust vehicle tracking[ J]. Intelligent Transportation Systems, 2004, 5 (3) : 142-154.
  • 5RAD R, JAMZAD M. Real time classification and tracking of multiple vehicles in highways[ J]. Pattern Recognition Letters, 2005, 26: 1597-1607.
  • 6林培群,徐建闽.复杂交通场景中运动车辆的检测与轨迹跟踪[J].华南理工大学学报(自然科学版),2008,36(6):84-89. 被引量:3
  • 7常好丽,史忠科.基于单目视觉的运动行人检测与跟踪方法[J].交通运输工程学报,2006,6(2):55-59. 被引量:12
  • 8CUCCHIARA R, GRANA C, TARDINI G, et al. Probabilistic people tracking for occlusion handling[ C] //Proceedings of the 17th International Conference on ICPR. Washington DC USA: IEEE Computer Society, 2004, 1: 132-135.
  • 9ENG H L, WANG J X, KAM A H, et al. A bayesian framework for robust human detection and occlusion handling using human shape model[ C ] //Proceedings of the 17th International Conference on ICPR. Washing DC USA: IEEE Computer Society, 2004, 2: 257-260.
  • 10李志慧,张长海,曲昭伟,魏巍,王殿海.交通流视频检测中背景初始化算法[J].吉林大学学报(工学版),2008,38(1):148-151. 被引量:11

二级参考文献40

共引文献34

同被引文献117

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部