期刊文献+

一种新的含噪遥感图像Otsu分割算法研究 被引量:4

A new noisy remote image Otsu segmentation algorithm research
下载PDF
导出
摘要 Otsu(最大类间方差)是经典的非参数、无监督、自动获取最佳阈值的最优图像分割方法。但是,在用于含噪图像的分割时,Otsu方法并不能取得理想的分割效果。针对这一问题,本文在Otsu分割方法的基础上,给出了一种新的含噪遥感图像分割算法。该算法首先用小波包对含噪图像进行全局阈值的去噪处理,然后利用局部加权回归对图像像素逐一估计去噪,得到去噪后的图像,之后采用Otsu方法对估计图像分割。仿真实验表明:该算法不仅计算量小,具有良好的抗噪能力,而且获得了较好的分割效果。 Otsu(the variance between the largest category) is a non-classical parameters,unsupervised,accessed to the best threshold automatic,the best image segmentation method.But when it is used in noise image,Otsu method can not provide satisfactory results,Under this situation,we try to apply new noise image segmentation method base on Otsu method.First of all,this new method apply wavelet package transformation to reduce noise,then,we apply locally weighted regresion estimation to compute each image pixel,Finally,we adopt Otsu method to segment image.The simulation experiments show that the algorithm has the small amount of computing advantages and can reach better effect of segmentation by experiment in particular Remote image segmentation.
出处 《激光杂志》 CAS CSCD 北大核心 2010年第6期28-30,共3页 Laser Journal
基金 科技部国际科技合作项目(项目编号:2009DFA12870)
关键词 图像分割 小波包变化 局部加权回归 OTSU分割 image segmentation wavelet package transformation LWR otsu segmentation
  • 相关文献

参考文献10

  • 1Ruey - Ming Chao, Hsien - Chu Wu, Zi - Chun Chen. Image segmentation by automatic histogram thresholding [J]. ICIS 2009, November 24 - 26, 2009 Seoul, Korea , Copyright 2009 ACM 978 - 1 - 60558 - 710 - 3/09/11.
  • 2Salim Ben Chaabane, Mounir Sayadi, Fadrat Fnaiech, and Eric Brassart. Colour Image Segmentation Using Homogeneity Method and Data Fusion Techniques[J]. Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2010, Article ID 367297, 11 pages doi: 10.1155/2010/367297.
  • 3Hiroaki Kurokawa, Shuzo Kaneko, Masato Yonekawa. A Color Image Segmentation Using Inhibitory Connected Pulse Coupled Neural Network [C]. Advances in Neuro- Information Processing: 15th International Conference, ICONIP 2008,Auckland, New Zealand, November 25- 28, 2008, Revised Selected Papers, Part II.
  • 4V.C. Dinh, Raimun d Leitner, Pavel Paclik, and Robert P. W. Duin. A Clustering Based Method for Edge Detection in Hyperspectral Images[ J ]. A.- B. Salberg, J.Y. Hardeberg, and R. Jenssen (Eds.): SCIA 2009, LNCS 5575, pp. 580-587, 2009.c-Springer - Verlag Berlin Heidelberg 2009.
  • 5P. Wiederhold and R. P. Bameva (Eds.). A General Bayesian Markov Random Field Model for Probabilistic Image Segmentation Oscar Dalmau and Mariano Rivera[J]. IWCIA 2009, LNCS 5852, pp. 149 - 161, 2009. Springer- Verlag Berlin Heidelberg 2009.
  • 6H.B. Kekre, Saylee Gharge. SAR Image Segmentation using co - occurrence matrix and slope magnitude[J]. ICAC3'09, January 23 - 24, 2009, Mumbai, Maharashtra, India. Copyright 2009 ACM 978 - 1 - 60558 - 351 - 8.
  • 7Filiberto Pla, Genre Gracia, Pedro Garcia - Sevilla, Majid Mirmehdi, and Xianghua Xie. Multi - spectral Texture Characterisation for Remote Sensing Image Segmentation[J]. H. Aranjo et al. ( Eds. ) : lbPRIA 2009, LNCS 5524, pp. 257 - 264, 2009. Springer - Verlag Berlin Heidelberg 2009.
  • 8Du Gen- yuan,Miao Fang,Tian Sheng-li, Liu Ye.A Modified Fuzzy C - means Algorithm in Remote Sensing Image Segmentation[J].IEEE Computer Society 1730 Massachusetts Ave., NW Washington, DC USA, ISBN: 978 - 0 - 7695 - 3682 - 8 DOI: 10.1109/ESIAT.2009. 169.
  • 9Otsu N. A. Threshold Selection Method from Gray Level Histogram[J]. IEEE Trans, 1979, SMC9( 1 ) : 62 - 66.
  • 10Cleveland. R. J. Devlin. S. J. Eoccally Weighted Regression: An Approach to Regression Analysis by local Fitting[J].J. Am. Stat, Assoc., 1998,83 : 596 - 610.

同被引文献37

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部