期刊文献+

空间独立插值下的节点ICM拓扑优化方法 被引量:2

NODE-BASED ICM METHOD WITH INDEPENDENT SPATIAL INTERPOLATION
原文传递
导出
摘要 为了克服连续体结构拓扑优化中的数值不稳定性现象,在独立连续映射法中,采用节点拓扑变量描述单元的有无。单元内任意一点的弹性模量和单元体积建模基于空间独立的拓扑变量场,基于低阶单元形函数和改进过滤方式下的插值函数,得到了各类不同空间插值下的ICM法。通过二维拓扑优化数值算例比较了各类方法下的优化结果。结果表明,混合插值模式下的ICM法能得到较为理想的拓扑优化结果。 To resolve the numerical instabilities in continuum topology optimization,nodal topological variables are adopted to describe the existence or null of elements combined with independent continuous mapping method.Young's module and volume of the element are calculated by independent topological variable fields.Based on the lower order element shape function and the interpolation function based on filtering scheme,various kinds of ICM methods with different spatial field of topological variable are derived.Several two-dimensional linear elastic topology optimization problems are solved.The results demonstrate that no checkerboard patterns and mesh-dependent phenomena are obtained with the mixed spatial interpolation scheme.
作者 龙凯 左正兴
出处 《工程力学》 EI CSCD 北大核心 2010年第12期90-95,101,共7页 Engineering Mechanics
基金 国防科工委基础技术项目(10300204B0801)
关键词 拓扑优化 独立连续映射法 节点密度 棋盘格现象 网格依赖性 连续体结构 topology optimization independent continuous mapping method nodal density checkerboard patterns mesh dependence continuum structure
  • 相关文献

参考文献21

  • 1Sigmund O,Petersson J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards mesh-dependencies and local minima [J].Structural Optimization,1998,16(1):68-75.
  • 2袁振,吴长春.采用非协调元的连续体拓扑优化设计 [J].力学学报,2003,35(2):176-180. 被引量:23
  • 3袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计[J].中国科学技术大学学报,2001,31(6):694-699. 被引量:47
  • 4Haber R B,Jog C S,Bendsoe M P.A new approach to variable-topology shape using a constraint on perimeter [J].Structural Optimization,1996,11(1):1-12.
  • 5Zhou M,Shyy Y K,Thoms H L.Checkerboard and minimum member size control in topology optimization [J].Structural and Multidisciplinary Optimization,2001,21(2):152-158.
  • 6Sigmund O.Morphology-based black and white filters for topology optimization [J].Structural and Multidisciplinary Optimization,2007,33(4-5):401-424.
  • 7Hu Sanbao,Chen Liping,Zhang Yunqing.A crossing sensitivity filter for structural topology optimization with chamfering,rounding,and checkerboard-free patterns [J].Structural and Multidisciplinary Optimization,2009,37(5):529-540.
  • 8Matsui K,Terada K.Continuous approximation of material distribution for topology optimization [J].Internation Journal for Numerical Methods in Engineering,2004,59:1925-1944.
  • 9Rahmatalla S F,Swan C C.A Q4/Q4 continuum structural topology optimization implementation [J].Structural and Multidisciplinary Optimization,2004,27(1-2):130-135.
  • 10Paulino Glaucio H,Le Chau H.A modified Q4/Q4 element for topology optimization [J].Structural and Multidisciplinary Optimization,2009,37:255-264.

二级参考文献125

共引文献245

同被引文献23

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部