摘要
为了克服连续体结构拓扑优化中的数值不稳定性现象,在独立连续映射法中,采用节点拓扑变量描述单元的有无。单元内任意一点的弹性模量和单元体积建模基于空间独立的拓扑变量场,基于低阶单元形函数和改进过滤方式下的插值函数,得到了各类不同空间插值下的ICM法。通过二维拓扑优化数值算例比较了各类方法下的优化结果。结果表明,混合插值模式下的ICM法能得到较为理想的拓扑优化结果。
To resolve the numerical instabilities in continuum topology optimization,nodal topological variables are adopted to describe the existence or null of elements combined with independent continuous mapping method.Young's module and volume of the element are calculated by independent topological variable fields.Based on the lower order element shape function and the interpolation function based on filtering scheme,various kinds of ICM methods with different spatial field of topological variable are derived.Several two-dimensional linear elastic topology optimization problems are solved.The results demonstrate that no checkerboard patterns and mesh-dependent phenomena are obtained with the mixed spatial interpolation scheme.
出处
《工程力学》
EI
CSCD
北大核心
2010年第12期90-95,101,共7页
Engineering Mechanics
基金
国防科工委基础技术项目(10300204B0801)
关键词
拓扑优化
独立连续映射法
节点密度
棋盘格现象
网格依赖性
连续体结构
topology optimization
independent continuous mapping method
nodal density
checkerboard patterns
mesh dependence
continuum structure