期刊文献+

多形态稀疏性正则化的图像超分辨率算法 被引量:25

Multimorphology Sparsity Regularized Image Super-Resolution
下载PDF
导出
摘要 如何设计更加高效并能保持图像几何和纹理结构的多幅图像超分辨模型和算法是目前该领域有待解决的难点问题.针对图像的几何、纹理结构形态,分别建立符合类内强稀疏而类间强不相干的几何结构和纹理分量稀疏表示子成份字典,形成图像的多形态稀疏表示模型,进而提出一种新的基于多形态稀疏性正则化的多帧图像超分辨凸变分模型,模型中的正则项刻画了理想图像在多成份字典下的稀疏性先验约束,保真项度量其在退化模型下与观测信号的一致性,采用交替迭代法对该多变量优化问题进行数值求解,每一子问题采用前向后向的算法分裂法进行快速求解.针对可见光与红外图像序列进行了数值仿真,实验结果验证了本文模型与数值算法的有效性. It is difficult to design an effective image super-resolution model and algorithm that can preserve the geometric structures and texture.Two incoherent geometry and texture sub-dictionaries are constructed,which can provide sparse representations of geometry and texture structures respectively.Thus,a multi-morphology sparse representation model is established.Furthermore,a convex variational model is proposed for multi-frame image super-resolution with multi-morphology sparsity regularization.The regularization term constrains the underlying image to have a sparse representation in a multi-component dictionary.The fidelity term restricts the consistency with the measured image in terms of the data degradation model.An alternate minimization iteration algorithm is proposed to solve it numerically and proximal forward-backward operator splitting method is adopted for each sub-problem.Numerical experiments for optics and infrared images are presented and the experimental results demonstrate that our super-resolution model and numerical algorithm are both effective.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2898-2903,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071146 No.60672074 No.60802039) 国家高技术研究发展计划(863计划)课题(No.2007AA12Z124) 高等学校博士点专项基金(No.200802880018) 江苏省自然科学基金(No.SBK201022367) 南京理工大学研究基金(No.2010ZDJH07)
关键词 超分辨率 稀疏表示 多成份字典 多结构形态 前向后向算子分裂 super-resolution sparse representation multi-component dictionary morphological diversity forward-backward operator splitting
  • 相关文献

参考文献15

  • 1Park S C,Park M K,Kang M G.Super-resolution image recon struction-A technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 2M Irani,S Peleg.Improving resolution by image registration[J].Graphical Models and Image Processing,1991,53(3):231-239.
  • 3Patti J,Sezan M,Tekalp A M.High-resolution image reconstruction front a low-resolution image sequence in the presence of time-varying motion blur[A].IEEE hit Conf on Image Processing[C].Austin:IEEE Computer Society Press,1994.343-347.
  • 4Tuan Q Pham,Lucas J van Vliet,Klamer Schutte.Robust fusion of irregularly sampled data using adaptive normalized con volution[J].EURASIP Journal on Applied Signal Processing,2006,2006(10):236-247.
  • 5邵文泽,韦志辉.基于各向异性MRF建模的多帧图像变分超分辨率重建[J].电子学报,2009,37(6):1256-1263. 被引量:11
  • 6宋锐,吴成柯,封颖,张云锋.一种新的基于MAP的纹理自适应超分辨率图像复原算法[J].电子学报,2009,37(5):1124-1129. 被引量:6
  • 7Capel D,Zisserman A.Super-resolution enhancement of text image sequences[A].Proceedings of 15th International Conference on Pattern Recognition[C].Wasbington DC:IEEE Computer Society Press,2000.1600-1605.
  • 8M J Fadili,J L Starck,F Murtagh.Inpainting and zooming using space representations[J].The Cornputer Journal,2009,52(1):64-79.
  • 9J Bobin,J L Starck,J Fadili,et al.Morphological component analysis:an adaptative thresholding strategy[J].IEEE Transactions on Image Processing,2007,1600:675-2681.
  • 10G B Passty.Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[J].J Math Anal Appl,1979,72(7):383-390.

二级参考文献44

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2韩玉兵,吴乐南.基于自适应滤波的视频序列超分辨率重建[J].计算机学报,2006,29(4):642-647. 被引量:14
  • 3邵文泽,韦志辉.一种非线性数字滤波器的统一设计框架及其性能分析[J].计算机学报,2007,30(1):91-102. 被引量:10
  • 4S Farsiu,M Elad,P Milanfar.Multiframe demosaicing and super-resolution of color images[J].IEEE Transactions on Image processing,2006,15(1):141-159.
  • 5Shen Huanfeng,Zhang Liangpei,Huang Bo,et al.A MAP approach for joint motion estimation,segmentation,and super resolution[J].IEEE Transactions on Image Processing,2007,16(2):479-490.
  • 6R Y Tsai,T S Huang.Multi frame image restoration and registration[J].Advances in Computer Vision and Image Processing.1984,1(2):317-339.
  • 7R R Schultz,R L Stevenson.Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing,1996,5(6):996-1011.
  • 8CA Segall,A K Katsaggelos,R Molina,et al.Bayesian resolution enhancement of compressed video[J].IEEE Transactions on Image Processing,2004,13(7):898-911.
  • 9A Zomet,A Rav-Acha,S peleg.Robust super-resolution[A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Kauai,Hawaii,USA:IEEE,2001.645-650.
  • 10S Farsiu,M D Robinson,M Elad,ec al.Fast and robust multi frame super resolution[J].IEEE Transactions on Image Processing,2004,13(10),:1327-1344.

共引文献14

同被引文献274

引证文献25

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部