期刊文献+

微晶云母陶瓷微型拉瓦尔喷管的超声加工关键技术 被引量:1

Critical techniques of ultrasonic machining for micro Laval-nozzles of microcrystalline-mica-ceramics
下载PDF
导出
摘要 将微细超声加工方法与微细电火花加工方法相结合,解决了微晶云母陶瓷的微型拉瓦尔喷管加工中的关键技术问题,其中包括高精度多功能特种加工系统、微细超声工具的制备、工件的装夹与定位、超声加工工艺流程的设计及超声加工参数的选择。在自行研制的高精度多功能加工系统上,采用微细超声加工方法加工微晶云母陶瓷微型拉瓦尔喷管,采用微细电火花加工方法制备相应的超声加工工具,并且设计了工件夹持装置,将重复定位精度控制在2μm以内。此外,通过2套工艺流程方案的加工对比实验,选择出较优的加工方案,成功加工出入口直径为360μm、出口直径为320μm、喉部直径为170μm、总长为550μm的拉瓦尔喷管。 Micro-ultrasonic-machining(micro-USM) and micro electrical discharge machining(micro-EDM) were jointly used to resolve the critical problems of micro Laval-nozzle machining techniques of microcrystalline-mica-ceramic(MCMC),including a special machine with high precisions and multiple functions,the preparation of micro-USM tools,the clamping and locating of workpieces,the design of micro-USM process and the selection of the micro-USM conditions.Though a self-developed high-precision multi-functional machine tool,micro-USM was adopted to machine micro Laval-nozzles of MCMC cooperated with micro-EDM for tools preparation.Workpiece holding devices were designed to keep the repeat positioning accuracy less than 2 μm.Furthermore,by comparing two machining processes,a Laval-nozzle was successfully made by the better machining process with an inlet diameter of 360 μm,outlet diameter of 320 μm,throat diameter of 170 μm and total length of 550 μm.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2010年第6期698-702,共5页 Journal of Solid Rocket Technology
基金 国家自然科学基金重点项目(50635040) 国家863项目(2006AA04Z332)
关键词 微喷管 微细超声加工 微细电火花加工 微晶云母陶瓷 微推力器 micro nozzle micro-ultrasonic-machining micro electrical discharge machining microcrystalline-mica-ceramic micro thruster
  • 相关文献

参考文献9

二级参考文献36

  • 1赵稼祥.日本先进材料技术的现状与进展.出国考察报告,1997,(2):121-121.
  • 2Dorey R A, Rocks S A, Dauchy F, etal. Integrating functional ceramics into Microsystems[J]. Journal of the European Ceramic Society, 2008, 28 (7): 1397- 1403.
  • 3Schindler K, Roosen A. Manufacture of 3D structures by cold low pressure lamination of ceramic green tapes [J].Journal of the European Ceramic Society, 2009, 29(5): 899-904.
  • 4Zhu Y Q, Jin Y Z, Kroto H W, et al. Co-catalysed VLS growth of novel ceramic nanostructures [J]. Royal Society of Chemistry, 2004, 14(4): 685-689.
  • 5Muttamara A, Fukuzawa Y, Mohri N, etal. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM [J]. Journal of Materials Processing Technology, 2003, 140(1-3). 243-247.
  • 6Sarkar B R, Doloi B, Bhattacharyya B. Parametric analysis on electrochemical discharge machining of silicon nitride ceramics [J].International Journal of Advanced Manufacturing Technology, 2006, 28 (9- 10) : 873-881.
  • 7Knowles M R H, Rutterford G, Karnakis D, et al. Micro-machining of metals, ceramics and polymers using nanosecond lasers [J].International Journal of Advanced Manufacturing Technology, 2007, 33 (1-2): 95-102.
  • 8Donthu S, Alern N, Pan Z, et al. Directed fabrication of ceramic nanostructures on fragile substrates using soft-electron beam lithography (soft-eBL) [J]. IEEE Transactions on Nanotechnology, 2008, 7 ( 3 ) : 338-343.
  • 9Kelly K W, Harris C, Stephens L S, etal. Industrial applications for LIGA-fabricated micro heat exchangers[C]// Proceedings of SPIE. Bellingham, WA: SPIE, 2001: 73-84.
  • 10Cho M W, Kim D W, Cho W S. Analysis of micromachining characteristics of Si3N4-hBN composites [J].Journal of the European Ceramic Society, 2007, 27(2-3) : 1259-1265.

共引文献43

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部