期刊文献+

两类截尾变量的均值与方差的估计 被引量:6

Estimates of Mean and Variance for Two Types of Truncated Random Variables
下载PDF
导出
摘要 对任意给定的随机变量Xi∈[0,M],i=1,2,具有一阶矩EXi=μi,二阶矩EX2i=σ2i+μ2i及EX1X2=μ1μ2+σ12,运用对偶的思想,通过确定控制二次函数,得到两类截尾变量均值Emax(X1,X2,K)的上下界和方差varmax(0,X1-X2-K)的上界估计. For any given random variable Xi∈,i=1,2,with the first moment EXi=μi and the second moment EX2i=σ2i+μ2i and EX1X2=μ1μ2+σ12,by using the principle of duality and exactly dominating quadratic function,we can get the upper and lower bounds of two kinds of trancated random variables and the estimation of the upper bound of varmax(0,X1-X2-K).
出处 《哈尔滨理工大学学报》 CAS 北大核心 2010年第6期74-77,共4页 Journal of Harbin University of Science and Technology
关键词 对偶 均值 方差 duality mean variance
  • 相关文献

参考文献11

  • 1SHOHAT J A, TAMARKIN j D. The Problem of Moments. Ameri- can MathEmatical Society [ J ] Surveys. American Mathematical Society, New York. 1943,2:23 - 31.
  • 2KARLIN S, STUDDEN W. ,Tchebyshev Systems: with Applica- tions in Analysis and Statistics. Pure and Applied Mathematics [ M ]. A Series of Texts and Monographs. Interscience Publishers. John Wiley and Sons. 1966:112 -130.
  • 3BERTSIMAS D, POPESCU I. Optimal Inequalities in Probability Theory : A Convex Optimazition Approach [ J ]. SIAM J. Optim. 2005,15(3) :780 -804.
  • 4VANDENBERGHE L, COMANOR K. Generalized Chebyshev Bounds via Semidefinite Programming [ J ]. OIAM REVIEW. 2007,49( 1 ) :52 -64.
  • 5SCARF H. A Min-max Solution of an Inventory Problem, in : Ar- row, K. J. , Karlin, S. and Scarf, H. (Eds) In Studies in the mathematical theory of inventory and production [ M ]. Stanford U- niversity Press, 1958:201 - 209.
  • 6LO A. Semiparametric Upper Bounds for Option Prices and Expec- ted Payoffs [ J ]. Jumal of Financial Econonice. 1987, 19 : 373 -388.
  • 7GRUNDY B. Optionpriees and the Underlying As'set' s Return Distribution. Journal of Finance. 1991,46(3') : 1045 - 1070.
  • 8SCHEPPER A De, HEIJNEN B. Distribution-free Option Pricing [ J ]. Insurence: Mathematics and Economics, 2007, 40:179 - 199.
  • 9BOYLE P P, LIN X S. Bounds on Contingent Claimsbbased on Several Assets [ J ]. J. Financial Econom. 1997,46 ( 3 ) , 383 -400.
  • 10ZULUAGA L F, PENA J F. A Conic Programming Approach to Generalized Tchebycheff Inequalities[J]. Mathematics of Opera- tions Reserch, 2005,30 (2), 369 - 388.

同被引文献36

  • 1罗雁,苏清祖,陈晓东,葛如海,张学荣.汽车行驶称重系统的算法研究与精度分析[J].汽车工程,2005,27(4):495-497. 被引量:4
  • 2Godwin H J. On Generalizations of Tchebychef's Inequality[J]. Journal of American Statistics Association, 1955, 50:923-945.
  • 3Marshall A, Olkin I. Multivariate Chebyshev Inequalities[J]. Annals of Mathematical Statistics, 1960, 31 : 1001-1014.
  • 4Savage I R. Probability Inequalities of the Tchebycheff Type[J]. Journal of Research of the National Bureau of Standards-B, Mathematics and Mathematical Physics, 1961, 65 ( 3 ) : 211-222.
  • 5Natarajan K, Zhou Y L. A Mean-variance Bound for a Three-piece Linear Function[J]. Probability in the Engineering and Inform- ationalSciences, 2007, 21 (4) : 611-621.
  • 6Vylder F D, Goovaerts M. Analytical Best Upper Bounds on Stop-loss Premiums[J]. Insurance Math Econom, 1982, 1 ( 3 ) : 163-175.
  • 7Vylder F D, Goovaerts M. Best Bounds on the Stop Loss Premium in Case of Known Range, Expectation, Variance and Mode of the Risk[J]. Insurance Math Econom, 1983, 2 (4) : 241-249.
  • 8Gao F, Li W V. Logarithmic Level Comparison for Small Deviation Probabilities[J]. Journal of Theoretical Probability, 2006, 19 (3) : 535-556.
  • 9Liu G Q, Li W V. Semiparametric Bounds of Mean and Variance for Exotic Options[J]. Science in China Series A: Mathematics Jul, 2009, 52 (7) : 1-14.
  • 10Stieltjes T J.Recherches Sur Les Fractions Continues[J].Annalesdela Facultede Sciences de Toulouse,1894,9(1):45-47.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部