摘要
对任意给定的随机变量Xi∈[0,M],i=1,2,具有一阶矩EXi=μi,二阶矩EX2i=σ2i+μ2i及EX1X2=μ1μ2+σ12,运用对偶的思想,通过确定控制二次函数,得到两类截尾变量均值Emax(X1,X2,K)的上下界和方差varmax(0,X1-X2-K)的上界估计.
For any given random variable Xi∈,i=1,2,with the first moment EXi=μi and the second moment EX2i=σ2i+μ2i and EX1X2=μ1μ2+σ12,by using the principle of duality and exactly dominating quadratic function,we can get the upper and lower bounds of two kinds of trancated random variables and the estimation of the upper bound of varmax(0,X1-X2-K).
出处
《哈尔滨理工大学学报》
CAS
北大核心
2010年第6期74-77,共4页
Journal of Harbin University of Science and Technology
关键词
对偶
均值
方差
duality
mean
variance